Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Гипотеза кинематического упрочнения

Компоненты а,/, характеризующие смещение центра упругой области вследствие пластической деформации, пропорциональны компонентам е ,- (гипотеза кинематического упрочнения [12, 21])  [c.207]

Гипотеза кинематического (трансляционного) упрочнения предполагает, что начальная поверхность нагружения 5о поступательно перемещается в новое положение без изменения размеров и формы (рис. 11.6). В этом случае уравнение поверхности нагружения (11.16) следует записать в виде  [c.256]


Гипотеза изотропно-кинематического (трансляционного) упрочнения представляет собой комбинацию предыдущих гипотез.  [c.256]

Приближенные зависимости нагрузок (усилий) от перемещений (деформаций), характерных для данной задачи, вытекают из предельных соотношений, свойственных жестко-упроч-няющимся телам и распространенных на случай упруго-пластического деформирования при линейном упрочнении. Эти зависимости, учитывая принятые кинематические гипотезы, позволяют получить приближенное решение для модуля упрочнения Ста на основе упругого и упруго-пластического решений (для модуля G-ti).  [c.71]

Начальная анизотропия может быть вызвана предварительной пластической деформацией. В связи с этим для развития математической теории пластичности исключительный интерес представляет исследование изменения геометрии предельной поверхности в связи с различной степенью предварительного пластического деформирования. При построении теории делаются предположения о характере упрочнения материала. В ряде работ исходят из гипотезы об изотропном упрочнении, т. е. предполагают, что поверхность текучести, сохраняя свою форму, изотропно расширяется. Однако эта гипотеза не может объяснить, например, эффект Баушингера. Анизотропность эффекта упрочнения учитывается кинематической моделью, в соответствии с которой поверхность текучести в процессе деформирования испытывает переносное движение в направлении деформации.  [c.297]

При установившейся ползучести общие пространственные уравнения ползучести аналогичны по структуре уравнениям деформационной теории пластичности с упрочнением. С другой стороны, кинематические гипотезы, лежащие в основе теории как упругих, так и упруго-пласти-ческих оболочек, не связаны со свойствами материала и потому применимы также для состояния установившейся (и неустановившейся) ползучести оболочек. Поэтому можно сразу же получить определяющие уравнения для ползущей оболочки из уравнений (1), заменив в них всюду компоненты деформации срединной поверхности бд, е ,. . ., т соответствующими скоростями бц, 83,. ... т и приняв в качестве функции упрочнения 0( = О (е ) надлежащую зависимость между интенсивностями напряжений и скоростей деформаций ползучести, например, степенной закон  [c.114]


Независимо от Ишлинского и почти одновременно с ним Прагер предложил аналогичную гипотезу, назвав ее гипотезой кинематического упрочнения, потому что она может быть проиллюстрирована на простой кинематической модели. Для наглядности обратимся к двумерному случаю, когда поверхности нагружения соответствует контур нагружения. Представим себе, что изготовлена рамка с вырезом, имеющим форму контура нагружения эта рамка может свободно перемещаться по плоскости напряжений, причем специальные направляющие обеспечивают поступательное перемещение, предотвращая поворот. В плоскости движется палец, воспроизводящий путь нагружения. Если между пальцем и вырезом рамки нет трения, то при перемещении пальца в произвольном направлении, составляющем острый угол с направлением внешней нормали к контуру выреза, рамка переместится по направлению нормали. Таким образом, перемещение центра рамки будет направлено так же, как приращение пластической деформации, величина этого перемещения как раз такая, какая нужна для того, чтобы контур нагружения все время проходил через точку нагружения. А теперь нужно представить себе, что аналогичная кинематическая модель построена в девятимерном пространстве.  [c.553]

Заметим, что при рассмотрении отдельных частных задач теории пластичности вместо всего пространства напряжений можно рассматривать подпространства с меньшим числом измерений. Но здесь приходится проявлять известную осторожность. Так, например, при плоском напряженном состоянии пластическая деформация будет трехмерной и использование двумерной кинематической модели типа Прагера может привести к неверным результатам, как отметил Будянский в дискуссии но статье Прагера. Эти трудности не возникают, если воспользоваться вариантом гипотезы трансляционного упрочнения, который был предложен Циглером. Согласно этой гипотезе тензор s определяется следующими дифференциальными уравнениями  [c.553]

В теории вязкопластичности эволюция поверхностей, ограничивающих область упругости в пространстве напряжений, может быть представлена сочетанием расширения (сужения), вращения, переноса и дисторсии поверхности текучести и поверхностей равных потенциалов - правилом кинематического и изотропного упрочнения. Введение тензора внутренних напряжений (тензора микронапряжений) ру как реального центра поверхности течения связано с наличием остаточньк напряжений на уровне микроструктуры и микронапряжений, связанных с разнообразными неоднородностями в структурных составляющих на мезоуровне. Дальнейшие упрощения заключаются в ведении дополнительных гипотез  [c.372]


Смотреть страницы где упоминается термин Гипотеза кинематического упрочнения : [c.564]    [c.89]   
Термопрочность деталей машин (1975) -- [ c.207 ]



ПОИСК



Гипотеза

Гипотеза упрочнения

Гипотезы кинематические

Упрочнение

Упрочнение кинематическое



© 2025 Mash-xxl.info Реклама на сайте