Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Силовые Схемы, особенности н перемещения

Схема трехступенчатой очистки жидкости системы Арлон 53 показана на рис. 131, а и в. К магнитным элементам сепаратора вначале притягиваются ферромагнитные частицы (I стадии очистки, рис. 131, а). Со временем ориентированные в магнитном поле частицы образуют щетки с направленными вдоль силовых линий волосками. Последующий рост щеток приводит к образованию концентрированной зоны вокруг всего пакета магнитных элементов, в которой задерживаются неметаллические частицы (рис. 131, б), и в первую очередь волокна (И стадия очистки). Скапливающиеся на ферромагнитных волосках неметаллические частицы ослабляют силу притяжения к магнитным элементам, увеличивают сопротивление потоку рабочей жидкости, в результате чего возникают сбросы осадка в гидравлическую систему. Явление сброса особенно заметно в период запуска гидравлического привода, когда находящаяся в зоне действия магнитного сепаратора рабочая жидкость получает ускоренное перемещение.  [c.240]


Ряд экспериментальных проверок показал, что для захватов роботов с упругими компенсирующими механизмами главными динамическими факторами являются силовые (сборочные силы и их реакции) в зоне контактирования собираемых деталей, их соотнощения и особенно направление действия. В то же время влияние таких параметров, как скорости и ускорения сборочного движения захвата, незначительно. Это объясняется резким уменьшением скорости сопряжения деталей относительно скорости сборочного движения захвата вследствие гашения ее деформирующимися элементами последнего. Для описания процесса сопряжения можно использовать принципы кинетостатики и возможных перемещений несвободных систем. Эти методы достаточно универсальны и эффективны с точки зрения практического применения в расчетных схемах захватных органов сборочных роботов при определении сил в зоне сборки по заданному движению руки робота с захватом.  [c.411]

Особенности этой схемы заключаются в том, что в ней отсутствуют вращающиеся эксцентрики управления силовыми реверсивными золотниками, а это позволяет устранить ранее применяемый гидродвигатель копировального прибора. Конструктивно простой командный золотник управляет работой усилителей. В гидросхеме сохранены силовые реверсивные золотники управления гидродвигателями продольного и поперечного перемещения стола.  [c.180]

В 1980-х гг. появилась гипотеза о круговороте плазмы в. магнитосфере Земли. Эксперим. подтверждение этой гипотезы получено при измерениях ионного состава Р. п.— среди энергичных частиц зарегистрирована значит, доля ионосферных ионов (ионов кислорода и молекулярных ионов). Хотя мн. аспекты процессов ускорения и переноса частиц в магнитосфере недостаточно ясны, в первом приближении Р. п. можно считать промежуточным резервуаром накопления энергичных частиц, перемещающихся по энергетич. шкале в процессе круговорота . Предполагается, что круговорот плазмы в магнитосфере Земли происходит по следующей схеме. В полярных областях вдоль открытых силовых линий геомагн. поля, уходящих в удалённые области магнитосферы, ионосферные ионы и электроны с энергией неск. эВ (превышающей их тепловую энергию) испаряются из плотных слоёв атмосферы, преодолевая гравитац. притяжение Земли (т, и. полярный ветер). Попадая в плазменный слой хвоста магнитосферы, эти частицы ускоряются до энергий порядка неск, кэВ и вовлекаются в конвективное движение плазмы к Земле, На внеш. границе Р. п. (на геоцентрич. расстояниях 6—10 На, Нд — радиус Земли) большие квазистационарные электрич. поля и сильно неоднородные магн. поля увеличивают энергию частиц ещё на один-два порядка. Далее, перемещаясь ближе к Земле, в район максимума потоков частиц Р, п. (2—5 На), в результате, рассеяния на колебаниях электрич. и магн. полей, частицы попадают в область всё более сильного магн. поля, испытывая индукд, ускорение вплоть до энергий в сотни МэВ. Те же процессы рассеяния, к-рые приводят к радиальному перемещению частиц к Земле, обусловливают их попадание в конус потерь (см. Магнитные ловушки). Он определяется соотношением между полем в вершине силовой линии (в экваториальной плоскости) и нолем вблизи торца геомагн. ловушки (в верх, слоях атмосферы). Частицы, у к-рых достаточно велика продольная (по отношению к магн. полю) компонента скорости при движении вдоль силовой линии, попадают в плотные слои атмосферы. Здесь они сталкиваются с ионами или нейтральными атомами и тормозятся, теряясь среди тепловых ионов. После переноса в полярные области заряж. частицы готовы вновь стать полярным ветром и начать новый цикл, Помимо высыпания в верх, атмосферу др. механизмом потерь является перезарядка энергичных частиц (см. Перезарядка ионов) на нейтральных атомах экзосферы. Этот процесс особенно важен для долгоживущих энергичных частиц. В целом различия в механизмах ускорения и потерь разных составляющих Р. п.— электронов, протонов и др. частиц — настолько  [c.208]


На рис. 11, д показана схема подъемной стрелки. Здесь заштрихованные ролики, смонтированные на вертикально-подвижной раме, могут подниматься несколько выше незаштрихованных роликов, чем изменяется направление движения груза. Подъемная стрелка может работать в механизированных и автоматизированных конвейерных линиях, так как время, необходимое для подъ-. ема подвижной рамы, весьма невелико, перемещение подвижных частей стрелки незначительное и легко может быть осуществлено электромагнитом, силовым цилиндром (пневматическим или гидравлическим) или любым электромеханическим устройством. Недостатком подъемной стрелки является дополнительное сопротивление движению грузов вследствие перепада роликов по высоте Это сопротивление может быть значительным и подлежит расчету при проектировании конвейера. Кроме того, у стрелок такого типа подъемные ролики трудно вписываются между стационарными роликами, особенно при небольших их шагах. В связи с этим вместо подъемных роликов иногда применяют подъемные диски.  [c.26]

В настоящее время разрабатывается два типа электрических ракетных двигателей — плазменный и ионный. В плазменном двигателе разогретое до полной ионизации рабочее тело поступает из плазмогенератора в разгонную камеру, где создано два поля — электростатическое и электромагнитное. Векторы напря-л<енности этих полей и продольная ось камеры взаимно перпендикулярны. Под действием электростатического поля заряженные частицы получают перемещение в поперечном направлении и при этом пересекают магнитные силовые линии. В результате возникает сила Лоренца, приводящая к ускорению частиц вдоль камеры. Таким образом создается направленный осевой поток, приводящий к возникновению тяги. Однако преднамеренно упрощенная нами схема ускорения частиц не наилучшая. В настоящее время основные надежды при разработке плазменного двигателя возлагаются на радиальное электростатическое поле, создаваемое коаксиальными электродами. Это позволяет освободиться от специально устанавливаемых тяжелых электромагнитов. Но не в этом суть дела. Плазменный двигатель позволяет получить удельную тягу, значение которой приближается к десяти тысячам единиц, что на порядок выше, чем в химических Двигателях. Попятно, однако, что плазменный двигатель может работать в условиях только достаточно глубокого вакуума и основная его особенность—малая тяга, существенно меньшая Веса двигателя и энергетической установки, вместе взятых,  [c.199]


Прочность Колебания Устойчивость Т.3 (1968) -- [ c.225 , c.228 ]



ПОИСК



Особенности силовых схем

Схемы Особенности схем



© 2025 Mash-xxl.info Реклама на сайте