Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Оптические свойства щелочных металлов

Неметаллический вклад в связь должен в результате также частично локализовать электроны проводимости в связанных состояниях вокруг металлических атомов. Некоторые физические свойства чувствительны к состоянию электронов в металлах (например, эффекта Холла, оптическая отражательная способность), эти данные говорят о том, что электроны проводимости почти или совершенно свободны в щелочных металлах, металлах I—VB групп Периодической системы элементов и даже в тех металлах, для которых по данным измерения других свойств (например, Ga, Ge, Sn, Bi, Sb) найдена ча-  [c.166]


Приведены оптические свойства ряда кристаллов — галогенидов щелочных и щелочноземельных металлов и полупроводников.  [c.98]

Полученное только на основании соображений симметрии уравнение (1.22-9) показывает, что эффекты второго порядка (например, получение второй гармоники и суммарных и разностных частот) не могут возникать в системах с центром инверсии. Однако, поскольку описание именно этих эффектов является особенно важным, мы не будем рассматривать модели, построенные по типу атома водорода или щелочного металла (обладающего инверсионной симметрией). Вместо таких моделей мы воспользуемся моделью, в которой центр тяжести оптического электрона расположен вне центра сферически симметричной системы (скажем, на оси х). Такое эксцентрическое положение равновесия определяется молекулярными или кристаллическими силами. Далее мы примем, что рассматриваемый оптический электрон в молекулярной или кристаллической системе принадлежит к электронам, образующим связь. Зависимость потенциальной энергии от смещения центра тяжести размазанного облака заряда оптического электрона определяется электростатическими и квантовомеханическими силами, обусловленными всеми взаимодействующими с ним носителями заряда, а также симметрией молекулы или кристаллической решетки предсказание детального хода потенциала для общего случая сделать невозможно, так как при тех или иных конкретных условиях могут иметь место самые разнообразные потенциальные функции. Однако возможно указать общее свойство интересующих нас типичных потенциальных функций по порядку величины квадратичные силы приближаются к линейным силам, если смещение центра тяжести достигает значения межатомного расстояния (Р 10- о м). Для силовых постоянных имеет место соотношение  [c.111]

Известно большое число методов определения энергии диссоциации двухатомных молекул. Они подробно описаны в [1]. Некоторые из них — оптические методы, метод расщепления молекулярного пучка в магнитном поле — применены к щелочным металлам, обзор этого дан в [2]. Однако значения, полученные для щелочных металлов различными методами, недостаточно согласуются между собой, допуски достигают 10%. Поэтому расчеты термодинамических свойств паров щелочных металлов (п.щ. м.), выполненные на основе различных рекомендаций по, например, для калия  [c.232]


Очень необычны свойства фуллеренов. Так, кристаллические фуллерены представляют собой полупроводники с фотопроводимостью при оптическом излучении, а кристаллы легированные атомами щелочных металлов, обладают металлической проводимостью и переходят в сверхпроводящее состояние при 30 К и выше. Превращение кристаллического фуллерена в алмаз происходит даже при комнатной температуре при давлении 20 ГПа, а при нагреве фуллерена до 1500 К для перехода в алмаз достаточно давления 7 ГПа (для аналогичного превращения графита в алмаз требуются температура 900 К и давление 30—50 ГПа). Растворы фуллеренов имеют нелинейные оптические свойства, что проявляется в резком снижении прозрачности раствора при превышении некоторого критического значения интенсивности оптического излучения. Фулле-ренам как молекулярным кластерам посвящены тысячи оригинальных статей, десятки обзоров и монографий, поэтому в данной книге они только упоминаются в связи с синтезом нового класса молекулярных кластеров, имеющих состав МлС,2, где М — атом металла.  [c.26]

Серебро обладает высокой электропроводностью, отражательной способностью и химической устойчивостью, особенно в условиях действия щелочных растворов и большинства органических кислот. Поэтому, покрытие серебром получило применение, главным образом, для улучшения электропроводящих свойств поверхности токонесущих деталей в электрохимической и радиоэлектронной отраслях промышленности, придания поверхности высоких оптических свойств (свежеполированное серебро имеет коэффициент отражения света около 99%), для защиты химической аппаратуры и приборов от коррозии под действием щелочей и органических кислот, а также с декоративной целью, часто с последующим оксидированием. Обычно покрывают серебром изделия из меди и ее сплавов. Для защиты от коррозии черных металлов серебрение не применяется.  [c.327]

Селениды бериллия, магния, и елочноземельных металлов имеют еще более высокие температуры плавления, чем моноселениды щелочных металлов (1000— 1800°С). Они также обладают высоким удельным электросопротивлением, так, например, для ВаЗе оно составляет l- 3 10 ° ОМ-СМ-, это соединение с ионным характером химической связи. Ширина запрещенной зоны для ВаЗе равна 4,0 эв. Эти соединения не обладают полупроводниковыми свойствами. Для селенидов щелочноземельных металлов характерны оптические свойства тонких пленок—коэффицент поглощения для MgSe и ЗгЗе равен 10 см .  [c.33]

Эти свойства наряду с возможностью создания готовых изделий сложной формы и с присущей углероду химической инертностью открывают широкие возможиости для применения стеклоугларода в качестве посуды для производства полупроводниковых материалов, оптических монокристаллов, металлов и сплавов, а также деталей аппаратуры для особо агрессивных сред. Наличие закрытой пористости затрудняет диффузию примесных атомов в обрабатываемый материал из стеклоуглеродной носуды. Сочетание химической стойкости со стабильной удельной поверхностью и относительно низким удельным электрическим сопротивлением вызывает интерес к использованию стеклоуглерода в электрохимии, в тон числе взамен платиновых электродов. Положительные результаты были получены, в частности, при применении стеклоуглерода в качестве электродов в хлоридных и криолито-глиноземных расплавах, в смеси хлоридов и фторидов щелочных металлов в среде аргона, водорода, хлора, хлористого водорода, смеси Нг- -НС1 при температурах до 1000°С.  [c.135]

МОЖНО судить О характере дефекта. Так, изучение /-центров в кристаллах галогенидов щелочных металлов методом ЭПР показывает, что их электронная волновая функция является линейной комбинацией 5- и р-орбиталей электронов иона натрия при некотором перекрывании с волновой функцией иона галогена. Подобные исследования были проведены на простых полупроводниках при изучении различных дефектов, в частности кластеров, образующихся при взаимодействии дефектов (см. гл. 7). Было показано, что ЭПР —это уникальный метод идентификации структуры сложных дефектных центров. Например, при облучении кремния частицами с высокой энергией образуются дефекты, одним из которых, как показал анализ, спектров ЭПР, оказался атом примеси кислорода, расположенный рядом с вакансией. Метод ЭПР применяется для детального исследования электронной структуры центров, например парамагнитного иона Мп в инертной матрице А12О3, и позволяет объяснить некоторые важные оптические и магнитные свойства твердого тела.  [c.84]



Смотреть страницы где упоминается термин Оптические свойства щелочных металлов : [c.699]    [c.521]    [c.104]    [c.363]    [c.100]   
Физика твердого тела Т.2 (0) -- [ c.294 , c.296 ]

Физика твердого тела Т.1 (0) -- [ c.294 , c.296 ]



ПОИСК



Металлов Свойства

Оптические оси металла

Щелочные металлы



© 2025 Mash-xxl.info Реклама на сайте