Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Релятивистское выражение движения точки

Если нас интересует движение системы как целого, то, отвлекаясь от внутренних процессов в системе и пренебрегая ее пространственной протяженностью, систему можно считать одной материальной точкой — частицей. Поскольку это так, систему релятивистских частиц как целое можно характеризовать полной энергией Е, импульсом р, массой покоя Mq и утверждать, что полученные ранее выражения справедливы и для системы частиц как целого.  [c.224]


Эта формулировка, хотя и весьма абстрактна, но имеет и некоторые преимущества. Дело в том, что уравнения Лагранжа не зависят от координатной системы, в чем и заключается их значение, но время в этих уравнениях еще играет особую роль. Напротив, принцип сохранения количества движения и энергии позволяет дать закона.м динамики фор.му, не зависящую от выбора координат пространства-времени. Действительно, если одновременно заменить переменные, относящиеся к параметрам положения системы и ко времени, то достаточно иметь выражение тензора количество движения — энергия в новой системе координат, чтобы получить уравнения движения. Эта схема охватывает, естественно, и релятивистскую механику.  [c.845]

К самым релятивистским объектам относится фотон, для которого А. Пуанкаре установил меру инерции т = Е/с (где Е — энергия фотона, с — скорость света в вакууме). Фотон движется со скоростью света, в теории относительности это безмассовая частица, а m — мера присущей телу (электромагнитной) энергии. В 1905 г. Эйнштейн выступил в печати с утверждением, что если тело теряет энергию путём излучения (электромагнитного, наше примечание), то масса тела уменьшается приблизительно на величину потерянной энергии, умноженной на 1/с [138]. Более общим, чем равенство Е = тс , выражением соотношения массы и энергии считается единое определение импульса в виде универсального утверждения (Планк, 1908 г.), а не только утверждения для случая электромагнитного излучения. В 1911 г. Лоренц показал, что необходимо включать в рассмотрение любые виды энергии [138]. Означает ли это, что в общую сумму энергий надо включать и потенциальную энергию сил инерции Например, силы инерции поступательного движения имеют потенциал, зависящий от ускорения. Тогда и масса должна зависеть от переносного ускорения. Ответ на поставленный вопрос могут дать только эксперименты.  [c.255]

При релятивистском обобщении термодинамики, как показали Г. Каллен и Дж. Горвиц , естественнее исходить из выражения для энтальпии. Действительно, в этом случае, как следует из теории относительности, все входящие в выражение (8.8) независимые переменные являются лоренц-инвариантами, тогда как независимые переменные других термодинамических потенциалов имеют либо разные, либо неизвестные законы преобразования. Кроме того, давление в качестве независимой переменной более подходящая величина, чем объем. В классической термодинамике систему можно было заключить в жесткие стенки, но само представление о твердом теле или абсолютно жестких стенках неприемлемо в рамках теории относительности—абсолютно твердое тело передавало бы сигналы с бесконечной скоростью, так как движение, сообщенное одной точке тела, незамедлительно вызовет движение всех остальных точек тела.  [c.151]


Уравнение (3.39) можно рассматривать как уравнение движения только тогда, когда известно, как именно зависит сила Р от переменных физической системы, вызывающих изменение импульса част]]цы. Когда скорость частицы мала по сравнению с с, релятивистские уравнения должны совпадать со вторым законом Ньютона, Поэтому в инерциальной системе 5°, относительно которой част ца в рассматриваемый момент имеет нулевую скорость, си лу Р можно считать тождественной ньютоновой силе. Тогда с помощью (3.40) люжио вы-числ 1ть силу Р в произвольной 1нерциальной системе 5, Пусть скорость частицы относительно 5 равна и если 5 в (3.40) — система покоя 5 , то V = и и и = О, и для силы Р в системе 5 получим выражение  [c.58]

Можно показать, что в соответствии с законом гравитации Эйнштейна должно иметь место медленное враш,ение орбиты одной материальной точки относительно другой. Это истолкование необъяснимой до того невязки векового апсидального движения орбиты Меркурия стало одной из успешных проверок теории относительности Эйнштейна. В тесных двойных системах, даже если составляющие звезды являются в гравитационном смысле материальными точками, должно иметь место аналогичное релятивистское движение периастра. Согласно Копалу, отношение периода релятивистского движения апсид U к орбитальному периоду Т дается выражением  [c.469]

Каждому типу вз-ствий в природе отвечают определённые П. ф. Описание П. ф. в классич. (неквантовой) теории поля производится с помощью одной или неск. (непрерывных) ф-ций поля, зависящих от координаты точки (ж, у, z),ь к-рой рассматривается поле, и от времени (г). Так, эл.-магн. поле может быть полностью описано с помощью четырёх ф-ций скалярного потенциала ф(л , у, г, I) и вектор-потенциала А х, у, z, t), к-рые вместе составляют четырёхмерный вектор в пространстве-времени. Напряжённости электрич. и магн. полей выражаются через производные этих ф-ций. В общем случае число независимых ф-ций определяется числом внутр. степеней свободы ч-ц, соответствующих данному полю (см. ниже), напр, их спином, изотопическим спином и т. д. Исходя из общих принципов — требований релятивистской инвариантности и нек-рых более частных предположений (напр., для эл.-магн. поля — суперпозиции принципа и градиентной инвариантности), можно из ф-ций поля составить выражение для действия и с помощью наименьшего действия принципа получить дифф. ур-ния, определяющие поле. Значения ф-ций поля в каждой отд. точке можно рассматривать как обобщённые координаты П. ф. Следовательно, П. ф. представляется как физ. система с бесконечным числом степеней свободы. По общим правилам механики можно получить выражение для обобщённых импульсов п. ф. и найти плотности энергии, импульса и момента кол-ва движения поля.  [c.572]


Смотреть страницы где упоминается термин Релятивистское выражение движения точки : [c.35]    [c.150]   
Основные принципы классической механики и классической теории поля (1976) -- [ c.86 ]



ПОИСК



Выражение

Релятивистское выражение для

Точка — Движение



© 2025 Mash-xxl.info Реклама на сайте