Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ньютона изотропная функция

Для внесения полной ясности процитируем ряд высказываний из-диссертации Говарда Силы, сказывающиеся на движении среды, делятся на объемные и поверхностные. Второй закон Ньютона формулируется таким образом, чтобы ввести поверхностные силы как дивергенцию симметричного тензора (тензор напряжения). Вид тензора касательного напряжения для изотропной среды основывается на свойствах изотропных функций.  [c.92]


Третий член правой части уравнения (295) представляет собой воздействие на частицы потока сил трения, вызываемых вязкостью. В дальнейшем, в процессе интегрирования уравнений (294)—(298), придется найти связь напряжений трения т,-/ с полем скоростей потока. Возвращаясь к формуле (286), можно ее трактовать как закон пропорциональности одной из касательных компонент тензора напряжения компоненте тензора скоростей деформаций. Обобщая закон Ньютона на случай произвольного движения жидкости или газа, будем предполагать, что тензор напряжений в движущейся жидкой или газообразной среде есть линейная функция тензора скоростей деформаций. Для большинства рабочих агентов энергетических машин эта гипотеза хорошо оправдывается на опыте и ее можно было бы назвать обобщенным законом Ньютона. Численное выражение искомой линейной связи можно легко написать, если дополнительно считать движущуюся среду изотропной, т. е. такой, у которой физические свойства не зависят от особых, заданных наперед направлений в пространстве. При этом коэффициенты линейной связи между тензором напряжений Р и тензором скоростей деформаций S должны быть скалярами и искомая связь будет иметь вид  [c.167]

Полуэмпирическая теория турбулентности Прандтля включает в себя предположение Буссинеска [Л. 6] о возможности использования локального коэффициента турбулентной диффузии количества движения, который определяется соотношением, аналогичным уравнению Ньютона для вязкого трения. Однако в ряде теоретических и экспериментальных работ [Л, 7—9] было показано, что в случае диффузии некоторой концентрации от мгновенного точечного источника в однородном и изотропном турбулентном поле коэффициент турбулентной диффузии является функцией времени и стремится к постоянному значению лишь для сравнительно больших промежутков времени. Отсюда можно сделать заключение, что процессы турбулентной и молекулярной диффузии не могут быть описаны одинаковой зависимостью.  [c.315]

Для изотропной вязкой среды тензор напряжений в первом приближении можно считать линейной функцией скорости деформации. В соответствии с законом Ньютона — Коши — Пуассона этот тензор имеет вид  [c.166]


Для определения локальных характеристик движения и теплообмена жидкостей и газов используются уравнения, следующие из основных физических законов сохранения массы, количества движения, энергии в сочетании с обобщенным законом вязкого течения Ньютона и законом теплопроводности Фурье. Это приводит к уравнениям неразрывности, движения и энергии, которые дополняются функциями свойств жидкости от температуры и давления. При отсутствии турбулентности в химически однородных однофазных изотропных средах полученная система уравнений является замкнутой. Эти уравнения справедливы и для описания мгновенных характеристик течения в пределах микромасщтаба турбулентного потока.  [c.230]

Обобщая закон Ньютона (1) на случай произвольного движения жидкости или газа, будем предполагать, что тензор напряжений в движущейся жидкой или газообразной среде представляет линейную функцию тензора скоростей деформаций. Эту, хорошо оправдываемую на опыте для большинства употребительных жидкостей и газов гипотезу можно было бы назвать обобш,енным законом Ньютона. Численное выражение искомой линейной связи можно легко написать, если дополнительно предположить движущуюся среду изотропной , т. е. такой, что физические ее свойства не зависят от каких-либо особых, заданных наперед направлений в пространстве. При этом коэффициенты линейной связи между тензором напряжений Р и тензором скоростей деформаций должны быть скалярами п искомая связь сводится к фор.му.те  [c.471]


Смотреть страницы где упоминается термин Ньютона изотропная функция : [c.224]    [c.20]    [c.25]   
Первоначальный курс рациональной механики сплошных сред (1975) -- [ c.159 , c.207 , c.235 ]



ПОИСК



Изотропность

Ньютон



© 2025 Mash-xxl.info Реклама на сайте