Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Масса 71-74- Приборы и способы измерения

Тин прибора Диапазоны измерения толщины 5, мм Погрешность измерения Способ измерения Габаритные размеры, мм Масса, кг  [c.380]

Полученное значение фактического модуля упругости Уф сравнивают с расчетным ур. Недостатками этого способа измерения являются громоздкость оборудования (автомобиль МАЗ-200), большая масса прибора (13,5 кг), несоответствие времени действия нагрузки реальным условиям воздействия автомобиля на покрытие, низкая производительность, отсутствие графической записи вертикальной деформации.  [c.204]


ПРИБОРЫ И СПОСОБЫ ИЗМЕРЕНИЯ МАССЫ  [c.75]

Масса 71-74- Приборы и способы измерения 74-77 Материалы дефектоскопические 344 - Наборы 346-348  [c.458]

По способу проведения измерения метод сравнения подразделяют на нулевой, разностный (дифференциальный) методы и метод совпадения. Нулевой метод заключается в том, что эффект воздействия измеряемой величины полностью уравновешивается эффектом воздействия известной величины. Примером нулевого метода является измерение массы тела на рычажных весах с уравновешиванием ее калиброванными грузами. В разностном методе полного уравновешивания не происходит и разность между сравниваемыми величинами оценивается измерительным прибором. Значение измеряемой величины определяется в этом случае не только значением, воспроизводимым мерой, но и показаниями прибора. Метод совпадений состоит в том, что уровень какого-либо сигнала, однозначно связанного со значением искомой величины, сопоставляется с уровнем такого же сигнала, но определяемого соответствующей мерой. По совпадению уровней этих сигналов судят о значении измеряемой величины.  [c.135]

Точно так же при измерении некоторой массы М мы устанавливаем, во сколько раз эта измеряемая масса превосходит массу эталонного образца в один килограмм. Разумеется, практически никогда не пользуются сравнением измеряемых величин с основными эталонами, которые хранятся в специальных государственных метрологических учреждениях. (В СССР таким является Всесоюзный научно-исследовательский институт метрологии - ВНИИМ). Вместо этого пользуются измерительными приборами, тем или иным способом сверенными с эталонами. Это относится как к приборам, с помощью которых измеряют длину, - различного рода линейкам, микрометру, измерительному микроскопу, -так и к определяющим время (часы), массу (весы), а также электроизмерительным, оптическим и другим приборам.  [c.6]

Анализ химического состава смес . При молекулярном масс-спектральном анализе анализируют газообразную смесь, поступающую в ионный источник масс-спектрометра, так, чтобы найм, доля вещества попадала на раскалённый катод (и там разлагалась). Качественный анализ основан на измерении либо массы не-распавшегося молекулярного иона, либо распределения интенсивности линий в масс-спектре каждого вещества. Осн. способом ионизации является ионизация электронным ударом с энергией электронов в иеск. десятков эВ. Количественный анализ основан на пропорциональности интенсивности всех линий масс-спектра каждого из веществ его парциальному давлению в области ионизации. Суммарный масс-спектр смеси аддитивное наложение масс-спектров каждого из компонентов смеси. Для того чтобы состав смеси в области ионизации не отличался от исходного, стремятся обеспечить молекулярное (кнудсеновское) натекание газа в ионный источник. Для градуировки используют масс-спектры компонентов смеси и определяют относит, или абс. коэф. чувствительности масс-спектрометра к данному веществу. Абс. коэф. чувствительности — отношение интенсивности линии, принятой за эталонную, к кол-ву этого вещества в напускном объёме относит, чувствительность — отношение абс. чувствительности для 2 веществ. Относит, чувствительность прибора меняется со временем не более чем на неск. % (абс, чувствительность колеблется больше).  [c.58]


Ввиду этого разработаны специальные приборы (вискозиметры), с помощью которых производятся измерения скорости течения жидкости через калиброванные отверстия. Измерения, полученные таким путем, количественно связаны с вязкостью, выраженной в единицах массы, времени и длины. Подобным способом определяется относительная вязкость, единицы измерения которой непосредственно не связаны с физической природой вязкости. Так, например, в ряде стран, в том числе и в СССР, распространены градусы или секунды Энглера. Такими единицами выражается вязкость, измеренная вискозиметром, основанным на истечении жидкости через калиброванное отверстие определенного диаметра (2,8 мм). В этом приборе определяется время t истечения под собственным весом 200 испытываемой жидкости из цилиндрического сосуда через заданное отверстие при данной температуре, которое сравнивается с временем истечения из того же сосуда 200 см воды при температуре 20° С. В соответствии с этим вязкость жидкости по Энглеру (в градусах Энглера) выражается отношением  [c.18]

Описанный способ анализа газовых смесей на масс-спектрометре дает удовлетворительные результаты для газовых смесей, в которых парциальное давление компонент равно 10—90% для любой составляющей. В случае измерения смесей с малыми примесями, парциальные давления которых ниже 10%, описанная методика калибровки прибора по эталонным смесям не обеспечивает удовлетворительной точности, а при очень малых следах примеси какого-либо газа в основной смеси просто не пригодна.  [c.138]

Рассмотрим особенности устройства масс-спектрометров на примере статического масс-спектрометра отечественного производства МИ-1305, предназначенного для анализа состава газов и паров легколетучих жидкостей. В масс-анализаторе прибора для разделения ионов по массам и фокусировки ионного пучка используется секторное магнитное поле. Радиус центральной траектории 200 мм при дисперсии 1,45 мм на 1% относительной разности масс. Вакуумная система состоит из трех частей. В фор-вакуумной части используется насос типа ВН-4ИМ, в высоковакуумной —ДРН-10. Анализируемый пар вводится в источник ионов через третью часть вакуумной системы — систему напуска. Она состоит из двух идентичных каналов один для напуска одной или двух анализируемых проб, а другой — для напуска эталонных проб с известным составом. Обязательным является контроль давления в вакуумной системе. Для этого используются манометры с термопарным измерительным преобразователем (для форвакуумной части) и с ионизационным преобразователем (для высоковакуумной части). Ионизация паров осуществляется методом электронной бомбардировки (наиболее широко распространенный способ) в ис точнике ионов используется типовая ионная коллимирующая оптика по схеме ВИРА АН СССР [69]. Электронные блоки включают устройства для измерения ионных токов, давления, вакуумной блокировки, для контроля питания электромагнита и источника ионов.  [c.291]

Классификация приборов для измерения перемещений та же. что и в тензометрах (см. стр. 490). Кроме того, приборы для измерения перемещений различаются а) по виду механических величин, преобразуемых в пропорциональные им сигналы (с датчиком перемещения, с датчиком скоростей, с датчиком ускорений, с датчиком деформаций) б) но способу обеспечения неподвижной точки, по отношению к которой измеряется перемещение (датчик связан с неподвижной точкой датчик сейсмического типа, при котором записывается перемещение относительно массы, подвешенной к корпусу прибора на пружинах) [13] в) по числу компонент измеряемых перемещений г) по виду успокоения подвижной системы.  [c.511]

Г, теплопроводностью, механической прочностью, отсутствием химич. воздействия на материал термопары и сохранением электрич. изоляционных свойств при высоких t°. Вся совокупность этих требований неосуществима и потому совершенных защитных оболочек не имеется. В качестве внутреннего, изолирующего ветвь термопары, материала применяется огнеупорный фарфор или специальная масса Маркварда (см. Спр. ТЭ, т. III, стр. 208). Наружной предохранительной трубкой служит до 700° железо, а для более высоких железо, покрытое по особому способу алюминием, предохраняющим от окисления. С успехом употребляются трубки из нихрома (см.) или нержавеющей стали. Другой ответственной частью пирометра является прибор для измерения эдс. К наиболее распространенному типу такого прибора принадлежат милливольтметры с постоянным магнитом (Де-пре-д Арсонваля). Пирометрич. милливольтметры обладают специфич. особенностями. По самому характеру их применения здесь заметную роль играет внешнее сопротивление в виде термопары и соединительных проводов. В зависимости от длины и сечения соединительных проводов и большего или меньшего нагрева термопары это сопротивление получает переменное значение. Угол поворота подвижной системы прибора (рамки и стрелки)  [c.224]


Измерить физическую величину (непосредственно прибором или косвенно, т.е. вычисляя по формуле, выражающей ее через другие физические величины) - значит установить, сколько единиц, принятых для ее измерения, она составляет. Поэтому физическая величина выражается именованным числом, у которого наименование обозначает единицу измерения. В физике оказывается достаточным произвольно выбрать единицы измерения для шести физических величин (основные). В Международной системе единиц (СИ), которой в соответствии с рекомендацией мы будем пользоваться, за оснорнме выбраны единицы длины - метр (1м), массы - килограмм (1кг), времени - секунда (1с), температуры - кельвин (1К), силы тока - ампер (1А), силы света - кандела (1кд). Единицы измерения остальных физических величин являются производными от основных и вытекают как. следствие из формул, связывающих эти величины с основными, Например, единица измерения скорости следует из определения величины скорости у = А5/А1 1 =1 ед.ск., если за время Лг=1с тело проходит путь / 5=1м. Соотношение, выражающее единицу физической величины через основные единицы, называется формулой размерности. Для скорости 1 ед.ск. = 1м/1с и формула размерности скорости имеет вид [У]=[ЩТ], где [Ь] и [Т] - символическое обозначение размерностей длины и времени. Подчеркнем, что определение физической величины должно указывать, как эту величину можно прямо или косвенно измерить (см. определение силы в 7, хотя в большинстве случаев возможный способ измерения физической величины виден из формулы, являющейся ее определением).  [c.14]

Известная разность масс нейтрона и протона дает возможность вычислить граничную энергию р-спектра нейтрона и функцию F и, следовательно, теоретически предсказать период полураспада т для свободного нейтрона. Оценка давала значение т 30 мин. Определение периода полураспада такого П14рядка для радиоактивного ядра не представляет никаких сложностей. Тем не менее опыт по обнаружению р-распада свободного нейтрона чрезвычайно труден. Эта трудность связана с тем, что из нейтронов нельзя приготовить неподвижную мишень для последующего измерения ее радиоактивности обычным способом. Свободные нейтроны движутся и их нельзя остановить без того, чтобы они не перестали быть свободными. При этом даже самые медленные нейтроны, образующиеся в результате замедления быстрых нейтронов до энергии теплового движения атомов среды , имеют (при комнатной температуре) скорость v 2 X Х10 Mf eK. Такой нейтрон, войдя в прибор для регистрации р-распада размерами I 10 см, через  [c.162]

Чрезвычайно разнообразны также и методы измерений. Простые измерительные линейки и сложные оптические приборы служат для измерения длины магнитоэлектрические, электромагнитные и тепловые приборы измеряют напряжение и силу тока манометры различных типов измеряют давление и т.д. Однако независимо от применяемого способа всякое измерение любой физической велшшны сводится к экспериментальному определению отношения данной величины к другой подобной, принятой за единицу. Так, например, измеряя длину стола, мы определяем отношение этой длины к длине другого тела, принятой нами за единицу длины (например, метровой линейки) взвешивая кусок хлеба, узнаем, во сколько раз его масса больше или меньше  [c.13]

В свое время масс-спектрометрические измерения сыграли неоценимую роль в физических исследованиях, связанных с установлением точных значений атомных весов (масс). Фундаментальное подтверждение гипотезы о существовании изотопов обязано появлению способа пространственного разделения моноэнергетических заряженных частиц в магнитном поле по отнощению их массы к заряду. С 1919 по 1923 г. Астоном [3] было неопровержимо доказано существование изотопов у неона, лития, гелия, водорода, азота, криптона и других элементов. Позднее масс-спектрографическим методом были определены значения дефектов массы для дублетов на легких элементах. Затем, после появления приборов с высокой разрешающей способностью, Нир, Р. А. Де-мирханов и др. [4—7] провели точные измерения в области от стронция до рутения и от европия до золота,  [c.5]

Еще одна характерная особенность выгодно отличает масс-спектрометр МС-62 от других приборов. На этом приборе независимо от величины высокомегомных сопротивлений, включенных на входе усилителей ионных токов, без предварительных измерений эталонных смесей можно непосредственно получить истинное отношение ионных токов для любой пары масс. Для этого необходимо сначала принять на оба коллектора ионные пучки одной и той же массы и регулировкой вытягивающего потенциала с любой стороны ионного источника точно с помощью компенсационной схемы установить равенство выходных напряжений усилителей ионных токов. Указанная калибровка независимо от неравенства площадей приемных щелей, величин высокоомных входных сопротивлений позволяет установить отношение чувствительностей усилительных каналов 1 1. Очевидно, таким же способом можно настроить усилительные каналы на любое отношение чувствительностей- Эта несложная калибровка прибора расширяет возможность компенсационных измерений. Таким образом определяют отношение интенсивностей двух ионных пучков в большом диапазоне концентраций и масс независимо от того, какая компонента из них (тяжелая или легкая) имеет малую величину и насколько различны величины входных сопротивлений усилителей ионных токов. На обычных приборах ввиду невозможности менять местами траектории ионных пучков легкого и тяжелого изотопов этого сделать нельзя.  [c.146]

Для калибровки прибора перед началом измерения выполняют несложную процедуру. Сначала один и тот же ионный пучок принимается па оба коллектора, затем, регулируя вытягивающие потенциалы с любой из сторон источника ионов, устанавливают равенство выходных напряжений усилителей ионных токов. Дальнейшая задача сводится к тому, чтобы регулировкой величин ионных токов 1, h, вытягиваемых из источника при неизвестных значениях сопротивлений Ru R2, установить равенство произведений IiRi=hR2- С помощью компенсационной схемы эта операция в течение нескольких секунд может быть выполнена с высокой точностью. Таким образом, если на входе усилителей сопротивления Ri и R2 различны, то, перераспределяя ионные токи в пучках, вытягиваемых из соответствующих щелей источника, можно калибровать каналы усилителей в целом. Таким способом можно установить не только равенство указанных произведений, но и получить любое заданное отношение этих произведений I R /l2R2- Это означает, что прямые измерения отношения токов двух ионных пучков, сильно различающихся по интенсивности, можно проводить независимо от того, какой пучок (легкой или тяжелой массы) имеет меньшую интенсивность. При этом не имеет значения соотношение величин I R и /2/ 2.  [c.162]


Другой способ градуировки основан на использовании эффекта Пельтье (см. разд. 8.2) или проведении фазовых переходов с эндотермическим эффектом ( эндотермическая градуировка). При градуировке этим способом следует учитывать не только возможные неточности табличных значений тепловых эффектов, но также погрешности результатов взвешивания стандартного вещества, степень его чистоты, химической стабильности и т.п. Для многих калориметров градуировочный коэффициент зависит как от теплового эффекта, так и от природы и массы вещества, его удельной теплопроводности, коэффициента теплопередачи в сканирующих калориметрах величина К может зависеть также от скорости нагревания. Поэтому при градуировке какого-либо прибора необходимо систематически варьировать все возможные из указанных параметров. Такие измерения позволяют установить воспро изводимость, оценить точность и линейность, выходного сигнала калориметра (см. рис. 10.2).  [c.156]

Для измерения светостойкости пигментов в пластмассах и красках можно использовать саморегулирующийся денситометр [35]. Преимуществом такого прибора является возможность получать без смены образцов денситограммы для 4—5 проб. Это позволяет в строго одинаковых условиях испытывать серию образцов одного и того же материала, облученных в течение различного времени. Прибор позволяет непрерывно производить измерение оптической плотности поверхности образца размерами 4 X Ю см (толщина образца не должна превышать 1 мм) в продольном направлении, используя отражающий свет с длиной волны 510 нм. Образцы, окрашенные в массе пигментами, облучают под кварцевой лампой и через каждые 5 ч (или 10 ч) определяют оптическую плотность поверхности денситометрическим способом. Оценивают светостойкость временем, в течение которого оптическая плотность пигмента уменьшается на 10 %. Денситометрический метод определения светостойкости дает хорошую воспроизводимость результатов (погрешность 1—2%) при одинаковом содержании пигмента в образцах.  [c.59]


Смотреть страницы где упоминается термин Масса 71-74- Приборы и способы измерения : [c.276]    [c.259]    [c.868]   
Машиностроение энциклопедия ТомIII-7 Измерения контроль испытания и диагностика РазделIII Технология производства машин (2001) -- [ c.74 , c.75 , c.76 ]



ПОИСК



Измерение масс

Способы измерения и приборы

Способы измерения масс и сил



© 2025 Mash-xxl.info Реклама на сайте