Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Напряжение при разрыве

Определяемое таким образом напряжение при разрыве образца весьма условно и не может быть использовано в качестве характеристики механических свойств стали. Условность состоит в том, что получено оно делением силы в момент разрыва на первоначальную площадь поперечного сечения образца, а не на действительную его площадь при разрыве, которая значительно меньше начальной вследствие образования шейки.  [c.94]

Большинство исследователей подтверждают данные Бриджмена о возрастании с увеличением давления истинного растягивающего напряжения при разрыве sp (рис. 234).  [c.442]


Напряжение при разрыве (истинное) = У —  [c.14]

Разрушающее напряжение при разрыве, кгс/см  [c.291]

Фактическое напряжение при разрыве образцов для пластичных материалов значительно выше предела прочности, поскольку разрыву предшествует поперечное сужение — образование шейки. Поэтому для пластичных материалов предел прочности сам по себе не представляет интереса как механическая характеристика материала, но служит показателем других величин, характеризующих его прочность. Поскольку предел прочности связан определенными зависимостям,и с этими величинами, например с пределом текучести и пределом выносливости, то он может быть базой при выборе допускаемых напряжений для пластичных металлов.  [c.21]

Разрушение образца наступает вскоре после появления шейки. При этом нагрузка падает (точка F), хотя истинное значение напряжения при разрыве в связи с резким уменьшением площади поперечного сечения существенно возрастает и может быть определено отношением  [c.58]

Значение истинного напряжения при разрыве определяется по формуле (3.4), т. е. s =PJF.  [c.49]

Рис. 2.35. Схема изменения растягивающего напряжения в коротком волокне при различной длине волокна (о — напряжение при разрыве волокна, 1с — критическая длина волокна). Стрелкой указано увеличение длины волокна. Рис. 2.35. Схема изменения растягивающего напряжения в коротком волокне при различной длине волокна (о — напряжение при разрыве волокна, 1с — <a href="/info/38703">критическая длина волокна</a>). Стрелкой указано увеличение длины волокна.
Рнс. 2.36. Зависимость отношения разрушающих напряжений при разрыве композиционных материалов (сгс кор/Ос непр), содержащих одинаковую объемную долю коротких п непрерывных волокон (ф(=1) от отношения фактической и критической (1Цс) длины волокон [54].  [c.93]

Локальные дополнительные растягиваюш ие усилия, воздей-ствуюш,ие на неразрушенные волокна, могут привести к нестабильному росту треш ин, так как разрушение второго соседнего волокна приводит к еще более высоким локальным силам, задерживающим сдвиг. Эта задержка сдвига изображена в двух измерениях на рис. 13. Если эти силы распределены равномерно между шестью ближайшими соседями и среднее напряжение на волокне составляет 2,8 ГН/м (280 кгс/мм ), локальное приращение растягивающих напряжений при разрыве для всех соседних волокон будет равно 2,8 ГН/м (280 кгс/мм ) или 0,45 ГН/м л (46,2 кгс/мм ) на одно волокно. Это приращение напряжения достигает максимальной величины при разрушении волокна и снижается до нуля на расстоянии L (длина передачи напряжений сдвига) от места разрушения. Аналогичный эффект возрастания растягивающего напряжения был замечен Розеном на стеклянных волокнах.  [c.33]


Соотношения на линии разрыва напряжений. При разрывах должны выполняться простые соотношения, вытекающие из уравнений равновесия и условия пластичности. Пусть L — линия разрыва (фиг. 82) рассмотрим бесконечно малый элемент, лежащий на L.  [c.160]

Характеристика проволоки Напряжение при разрыве Число перегибов на 180°  [c.67]

СТОЙКОСТЬ И может работать при давлении до 1000 МПа и выше. Прочность полиуретана в 6—8 раз выше прочности резины. Напряжение при разрыве до 60 МПа, относительное удлинение — до 600 %, остаточная деформация 2—4 %, первоначальная форма хорошо и быстро восстанавливается после нагружения. Полиуретан обладает бензо- и маслостойкостью, что особенно важно при штамповке на гидравлических прессах. Стойкость полиуретана при выполнении разделительных операций на порядок выше, чем у резины, и может составлять 10 тыс. циклов нагружения и больше.  [c.41]

При дальнейшем увеличении отверстия напряжения у наружного края пластинки все больше приближаются к нулю, не переходя в сжатие. Этот результат подсказывает возможную форму для образцов при динамическом испытании на растяжение для этой цели следует выбрать образец прямоугольного сечения с очень большим центральным отверстием круглой или эллиптической формы. В хрупких материалах описанное выше распределение напряжений сохраняется до момента разрушения в пластичных же материалах напряжения по наименьшему поперечному сечению перед разрушением стремятся к равномерному распределению. Таким образом величина напряжений при разрыве поддается более точному вычислению, чем при опытах на перелом надрезанных образцов, в которых распределение напряжений чрезвычайно сложно.  [c.418]

Интересно отметить, что во всех формах употребляемых в настоящее время цементных образцов среднее напряжение при разрыве меньше, чем максимальное растягивающее напряжение. Мнение ряда инженеров, что возможно и желательно повышать напряжение на растяжение цемента, подтверждается этими результатами.  [c.498]

Величина напряжения при разрыве не должна превышать следующих допускаемых для протяжки напряжений  [c.388]

Разрушающее напряжение при разрыве  [c.318]

В рамках одномерных моделей открывается возможность исследования и динамических эффектов, сопровождающих перераспределение напряжений при разрыве.волокон в композите [167]. Модели, учитывающие динамику перераспределения напряжений, рассматриваются в главе 3.  [c.32]

ПОСТРОЕНИЕ МОДЕЛИ ПЕРЕРАСПРЕДЕЛЕНИЯ НАПРЯЖЕНИЙ ПРИ РАЗРЫВЕ ВОЛОКНА В КОМПОЗИЦИОННОМ МАТЕРИАЛЕ  [c.55]

Лучщим методом контроля и отбраковки пружин, оказавшихся с низким пределом пропорщюнальности, является испытание пружин в неволе, т. е. выдержка их в течение 24 час. (иногда до 48 час.) в сжатом до соприкосновения витков состоянии. Длительность такого испытания необходима для того, чтобы возникшие внутренние напряжения, помимо упрочнения витков пружины и выявления остаточных деформаций, дали возможность вскрыть мельчайшие внутренние дефекты путем своеобразной разрядки напряжений при разрыве металла по слабым местам (трещинки, пузыри, глубокие риски и царапины).  [c.518]

Интерес к использованию графитовых материалов при высоких температурах объясняется тем, что при температурах около 2000° С графит является самым прочным из известных материалов и превосходит по прочности тугоплавкие окислы и металлы. Прочностные характеристики графита, в отличие от других материалов, улучшаются с повышением температуры. Так, сопротивление графита растяжению и сжатию при температуре 220—2500° С в 2—2,5 раза больше, чем при комнатной. Эти данные получены как зарубежными исследователями, так и отечественными на марках графита, изготовленных в Советском Союзе. Нами, например, было установлено, что разрушающее напряжение при разрыве для графита марки ГМЗ, изготавливаемого Московским электродным заводом, увеличивается от 1 кПмм при комнатной температуре до 2,2 кГ1мм при температуре 2200—2300° С. Испытания проводились в вакууме 10" —10 мм рт. ст.  [c.371]

Учитывая приведенные сведения и другие аналогичные результаты, можно сделать вывод, что пока не существует общей теории, которая позволяла бы точно описывать ползучесть и предсказывать разрыв при циклическом изменении температуры в условиях действия постоянного напряжения или при циклическом изменении напряжения в условиях действия постоянной температуры. Тем не менее в последнее время достигнуты некоторые успехи в разработке методов оценки долговечности с учетом одновременного проявления эффектов ползучести и усталости. Например, при прогнозировании возможности разрушения в условиях совместного действия ползучести и усталости при изотермическом циклическом нагружении иногда предполагается, что процесс ползучести определяется величиной среднего напряжения цикла а , а процесс усталости — амплитудой напряжения цикла о , причем эффекты обоих процессов суммируются линейно. Такой подход сходен с построением описанной в гл. 7 диаграммы Смита, за исключением того, что вместо отрезка Стц на оси Ощ (рис. 7.59) используется показанный на рис. 13.15 отрезок (Т,,,, соответствующий значению предельного статического напряокения ползучести. Предельное статическое напряжение ползучести представляет собой либо напряжение при предельной деформации ползучести, либо напряжение при разрыве в процессе ползучести в зависимости от того, какой вид разрушения более опасен.  [c.454]


Рис. 31. Эпюра распределения интенсивности напряжений при разрыве ру-лонированного сосуда, определенная методом измерения твердости Рис. 31. Эпюра <a href="/info/174637">распределения интенсивности</a> напряжений при разрыве ру-лонированного сосуда, <a href="/info/97124">определенная методом измерения</a> твердости
Молекулярная масса определяет деформационно-прочностные свойства каучуков не только до вулканизации, но и после нее. Флори [45, 46] и другие [47] установили, что разрушающее напряжение при разрыве вулканизованных каучуков возрастает до некоторого предельного значения пропорционально среднечисловой молекулярной массе исходного невулканизованного каучука.  [c.162]

Остаточные напряжения, вызванные неравномерной пластической деформацией, приводящие к возникновению плосконапряженного состояния металла, по своей сущности не могут влиять на предел прочности, предел текучести и действительное напряжение при разрыве, так как возникновение любой пластической деформации приводит к изменению в остаточных напряжениях и даже к их полному уничтожению. Но в случае, если остаточные напряжения вызывают объемнонапряженное состояние металла, они могут затруднять пластическую деформацию и вызвать повышение предела текучести стали. К сожалению, этот вопрос не исследован.  [c.135]

Большой интерес среди инженеров вызвала серия экспериментальных исследований, проведенных Фойхтом и его учениками с целью разъяснить понятия, относящиеся к прочности материалов. Работая на образцах, вырезанных из крупных кристаллов каменной соли, Фойхт нашел, что сопротивление растяжению весьма сильно зависит от ориентации оси образца относительно кристаллографических осей. Оно зависит также и от характера поверхности образца. Фойхт показал, что легкое травление боковой поверхности стеклянных образцов приводит к резкому повышению их сопротивления. Равным образом им было показано, что при неоднородном поле напряжений сопротивление в точке зависит не только от величины напряжений в этой точке, но также и от степени их изменений от точки к точке. Сравнивая, например, предельные сопротивления растяжению изгиба для каменной соли и для стекла, он находит, что наибольшее напряжение разрушения при изгибе почти вдвое превышает соответствующее напряжение при разрыве. Много испытаний было проведено им в условиях сложного напряженного состояния с той целью, чтобы проверить теорию Мора. Все эти испытания выполнялись на хрупких материалах, и результаты их не совпадали с теорией. Фойхт пришел к заключению, что вопрос о физической сущности прочности слишком сложен и что построить единую теорию, которую можно было бы с успехом применять ко всем видам строительных материалов, невозможно.  [c.413]

Главная трудность опытных исследований в этом направлении заключается в том, чтобы создать напряженное состояние определенного вида. В простейших случаях, например, при простом растяжении или простом сжатии, уже весьма затруднительно получить равномерное распределение напряжений по площади поперечного сечения испытуемого образца, и то, что мы называем прочностью материала при растяжении или сжатии, очень часто далеко не соответствует действительной его прочности в случае линейного напряженного состояния. Опыты А. Фёппля над разрывом цементных образцов ясно показали, например, что действительное сопротивление цемента растяжению несравненно больше, нежели мы считаем на основании разрывов на приборе Михаэлиса. Это подтверждается и опытами М. Грюблера над разрывом точильных камней при быстром вращении. Относительно неравномерности распределения напряжений при разрыве железных стержней можно найти некоторые указания у М. Руделоффа ).  [c.70]

Исследование проводилось с целью установления влияния скорости вытяжки V на коэффициент вытяжки m и на напряжение при разрыве (Тд. В результате проведенных экспериментов установлено, что коэффициент вытяжки т = 0,47 удалось получить только до скорости Удах = 45 м/мин. Начало повышения напряжения замечалось, начиная с 15 м/мин коэффициент вытяжки т 0,50 получен до Ушах = 120 м/мин, начало повышения напряжения, начиная с 25 м/мин и т. д. Следовательно, чем меньше коэффициент вытяжки т, т. е. чем выше степень деформации К , тем сильнее сказывается на увеличении максимального усилия вытяжки Р ах повышение максимальных скоростей деформирования. Ориентировочно можно считать, что при w ax до 120 м/мин усилие Р ах увеличивается на 15—16%, что следует учитывать при подборе скорости пресса для вытяжки. Следует отметить, что при пульсирующей вытяжке производительность может быть выше, чем при обычной вытяжке. Пульсирующий пресс позволяет вытяги-. вать изделия значительной глубины при малом радиусе (эксцентриситете) кривошипного вала. Конструкция пресса менее громоздкая. Поэтому этот способ вытяжки при должной разработке конструкции пресса является перспективным.  [c.231]

Разрушающее напряжение при разрыве в машинном направлении при толщине 0,13 мм составляет 107 МПа, электрическая прочность в масле 60 МВ/м. Повышенная прочность бумаги повволяет использовать ее для бандажи-ровки вместо тафтяной и киперной лент. Разработка такой бумаги ведется в настояш,ее время в СССР.  [c.230]

Внутренний диаметр, мм Разрушающее напряжение при разрыве, МПа, не менее Относительное удлиннение при разрыве, %, не менее  [c.304]

Из полимерных пленочных материалов высокой радиационной стойкостью обладает по-лиимидная пленка. В табл. 27.14 приведены результаты испытаний полиимидной и поли-этилентерефталатной пленок после облучения прогонами с энергией 10 МэВ в вакууме (1,33 X Х10- Па) при 373 К> Разрушающее напряжение при разрыве, удлинение, и число двойных перегибов л под нагрузкой 3,5 кг определяли при комнатной температуре.  [c.329]


Таким же образом можно рассчитать разрушающее напряжение при разрыве огр.р по максимальной нагрузке Fpaap в момент разрыва, предел текучести при растяжении Ор.т при нагрузке Fp,T и условный предел текучести Ор,1,у при нагрузке fp-,T,y.  [c.430]

Несмотря на определенные достижения в построении моделей деформируемых сред с неоднородной структурой и в изучении накопления повреждений в материалах в условиях сложного напряженного состояния [24—26, 97, 98, 121, 157, 158, 162, 165, 187, 188, 196, 204], при анализе процессов перераспределения напряжений в композитах, как правило, используются наиболее простые схемы, отражающие механику взаимодействия ком-ионентов на фоне акрооднородных, одноосных полей напряжений. Среди подходов, изучающих распределение напряжений на микроструктурном уровне, можно вьщелить два основных направления исследование перераспределения напряжений при разрыве волокон или при наличии дискретных волокон и анализ перераспределения напряжений, вызванного различием упругопластических свойств компонентов при их совместном деформировании.  [c.29]


Смотреть страницы где упоминается термин Напряжение при разрыве : [c.7]    [c.660]    [c.65]    [c.601]    [c.88]    [c.89]    [c.82]    [c.82]    [c.72]    [c.47]    [c.82]    [c.82]    [c.32]    [c.79]    [c.78]    [c.490]   
Лабораторный практикум по сопротивлению материалов (1975) -- [ c.7 ]

Сопротивление материалов (1962) -- [ c.80 ]



ПОИСК



Влияние предварительного растяжения и осевой нагрузки, воспринимаемой матрицей, да перераспределение напряжений при разрыве волокна в композиционном материале

Влияние уровня нагрузки и объемных долей компонентов на перераспределение напряжений при разрыве волокна в композиционном материале с упругопластической матрицей

Истинное напряжение при разрыв

Линии разрыва касательного напряжени

Линии разрыва напряжений и скоростей

Линии разрыва скоростей перемещений напряжений

Линия разрыва напряжений

Механические характеристики И распределение напряжений в паяиЫх соединениях при статическом разрыве

Напряжения Линии разрыва или скольжения

Напряжения Определение см разрыва в резьбе

Напряжения, допускаемые для расч протяжек на разрыв

Определение разрушающих напряжений при растяжении и относительных удлинений при разрыве покрытий

Построение модели перераспределения напряжений при разрыве волокна в композиционном материале

Протяжки Расчёт на разрыв — Допускаемые напряжения

Разрыв

Свойства твердых тел предельное напряжение на разры

Теоремы сравнения для коэффициента интенсивности напряжений на контуре плоской трещины нормального разрыва в безграничной среде

Теоремы сравнения для коэффициента интенсивности напряжений на контуре плоской трещины нормального разрыва при наличии линейных связей между ее поверхностями



© 2025 Mash-xxl.info Реклама на сайте