Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свободная энергия определение химического равновесия

Свободные энергии, или химические потенциалы, необходимые для определения химического равновесия, можно вычислить, исходя из тепловых величин, поддающихся непосредственному измерению, например теплот реакции и удельной теплоемкости. При этом, однако, нам потребуется некоторый новый весьма плодотворный принцип, который мы сейчас и рассмотрим. Как уже говорилось выше, химическое сродство определяется максимальной работой Е = — АО. Член АО состоит из двух частей  [c.168]


Сатурн, полосы СН4 в спектре 332 Свободная энергия 551 влияние ангармоничности 553 доля внутреннего вращения 555 определение химического равновесия 556 Свободное внутреннее вращение доля в  [c.622]

Определение константы химического равновесия по существу сводится к вычислению изменения свободной энергии реакции при условии стандартного состояния. Изменение свободной энергии реакции при условии изотермического стандартного состояния определяется изменением энтальпии и энтропии согласно выражению  [c.294]

Рассмотрим смесь газов А ,. . . , Аг и В ,. . . , Вз при температуре Т, заключенных в сосуд определенного объема V и химически взаимодействующих согласно уравнению (135). Когда смесь внутри сосуда принимает участие в хшижческих реакциях, то концентрация различных газов изменяется, в результате чего изменяется также свободная. энергия смеси. Выведем условие равновесия химических реакций из требования минимальности свободной энергии. Для этого следует сначала найти выражение для свободной энергии смеси газов с заданными концентрациями.  [c.94]

Правильное решение вопроса о химическом сродстве было дано Вант-Гоффом. Он предложил взять в качё-стве количественной меры химического сродства свободную энергию системы до и после реакции, рассчитанную для определенной массы реагирующих веществ. Как известно, при наличии химического равновесия эта разность свободных энергий достигает минимума и равна максимальной работе при обратимых процессах  [c.228]

При очень низких плотностях тока и обратимых условиях (бесконечно лМалое смещенное от состояния равновесия) можно предложить следующий ответ Рассмотрим ванну, состоящую из двух металлических электродов в очень слабокислом растворе сернокислой соли того же металла. Если металл переходит в раствор в виде растворимого сульфата на аноде и эквивалентное количество металла осаждается на катоде, тогда никакой химической работы нет, а имеется просто перенос металла из одного места в другое. При обратимых условиях поэтому весьма малая э. д. с. была бы достаточной, чтобы ток пошел через ванну. Но, если ток высаживает твердую гидроокись металла на аноде, оставляя раствор вокруг анода освобожденным от ОН -ионов и имеющим поэтому повышенную кислотность, то получается система с более высокой свободной, энергией, так как кислый раствор мог бы растворять гидроокись произвольно , с дальнейшим уменьшением свободной энергии. Таким образом для получения твердой гидроокиси на аноде потребовалась бы для подвода дополнительной энергии некоторая определенная э. д. с. Отсюда следует, что при очень низких значениях э. д. с. образование растворимого сульфата является единственно возможной реакцией при условии достаточной кислотности жидкости, обеспечивающей нестабильность твердой фазы — гидроокиси. Если же жидкость имеет среднещелочную реакцию, так что гидроокись могла бы остаться нерастворенной в виде стабильной фазы, тогдй то же рассуждение ведет к заключению, что гидроксильные ионы будут играть большую роль в анодном процессе, особенно если они, как, например, в данном случае, в большой концентрации. В этом случае при более низкой э. д. с. образование твердой пленки гидроокиси будет более возможно, чем образование растворимой соли, электрод станет пассивным, и растворение в значительной степени затормозится. Таким образом мы можем ожидать непре.рывную коррозию, имея растворимый сульфат в кислых растворах, но мы може.м надеяться на появление пассивности в щелочных растворах, если только гидроокись данного металла не растворяется в щелочном растворе данной концентрации. Критерием активности и пассивности является способность или неспособность растзора растворить гидроокись металла-.  [c.26]


Соотношение (9.91) вместе с формулами (9.29) и (9.30) для функций распределения, формулой (9.45) для свободной энергии каждого компонента и спектроскопически определенными атомными и молекулярными константами может быть использовано для определения константы равновесия любой химической реакции, описываемой уравнением типа (9.80). На практике константы равновесия для нескольких из большого числа возможных химических реакций затабулированы, В большей мере затабулированы более удобные и гибкие константы образования различных химических соединений из элементов. Они могут быть использованы для определения констант равновесия многих химиче-  [c.349]

Читатели, знакомые с теорией идеального бозе-газа, заметят, что выражение (23.10) является частным случаем функции распределения Бозе — Эйнштейна и определяет число бозонов с энергией (к), находягп,ихся в тепловом равновесии при температуре Г, если химический потенциал равен нулю. Отсутствие свободы в выборе ц связано с тем, что в случае фононов полное число бозонов при тепловом равновесии не служит независимой переменной, которую мы можем задавать по своему усмотрению (что справедливо, например, для атомов Не ), а целиком определяется температурой. [Химический потенциал по определению есть производная по числу частиц N от свободной энергии Р или термодинамического потенциала Гиббса С, т. е. ц = (дР йМ)т< у = (дб1дЩ-р р. Так как число фононов не сохраняется, оно должно быть определено из условия минимума Р или С, которое совпадает с равенством ( = 0. Из этого вывода видно, что равенство нулю химического потенциала есть общее свойство всех квазичастиц.— Прим. ред.]  [c.81]

Однако можно убедиться в том, что выведенное нами выра-зкение свободной энергии смеси газов остается правильным и для смеси газов, способных химически реагировать ме кду собой (в этом случае оно, очевидно, относится уже к системе, ие находящейся в состоянии термодинамического равновесия, так как химического равповесия здесь нет). Дело в том, что многие термодинамически возможные химические реакции, связанные с уменьшением свободной энергии, фактически идут только в присутствии определенных катализаторов, количество которых может быть ничтожно.  [c.154]

Подобно тому как с помощью табличньгх значений свободной энергии Гиббса образования можно рассчитывать константы равновесия химических реакций, пользуясь таблицами стандартных электродных потенциалов, можно рассчитать константы равновесия электрохимических реакций. Каждой электродной реакции приписан определенный потенциал, при этом действует соглашение о том, что потенциал платино-водородного электрода Н ] равен нулю. Иначе говоря, потенциал электродной реакции Н+ -Ь е Н2(г.) на платиновом электроде принят за потенциал сравнеьшя, а потенциалы всех остальных электродных реакций измеряют относительно него . Стандартными электродными потенциалами называются такие потенциалы, у которых активности всех реагентов и продуктов равны единице при Т = 298,15 К. Для любой электрохимической ячейки сумма соответствующих стандартных потенциалов равна ЭДС. Так как такие потенциалы соответствуют ситуации, когда все активности равны единице, из уравнения Нернста следует, что стандартный потенциал элемента равен Уо-  [c.266]

Испарение — одно из проявлений физико-химического превращения, при котором вещество со свободной поверхности жидкости переходит в газообразное состояние. Этот переход сопровождается поглощением тепловой энергии — теплоты испарения АСисп. При каждом заданном значении температуры между жидкостью и ее паром может установиться равновесие, характеризуемое определенной величиной давления насыщенного пара. В этом случае расход вещества, испаряющегося с поверхности, равен расходу вещества, переходящего обратно из газа в жидкость. Последний процесс называется конденсацией (см. гл. 6, 8).  [c.370]


Смотреть страницы где упоминается термин Свободная энергия определение химического равновесия : [c.113]   
Колебательные и вращательные спектры многоатомных молекул (1949) -- [ c.556 ]



ПОИСК



Равновесие фаз и химическое равновесие

Равновесие химическое

Свободная энергия

Химическая энергия

Энергия определение

Энергия свободная «химическая



© 2025 Mash-xxl.info Реклама на сайте