Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Газы защитные активные углекислый газ

Защитные газы. При сварке применяются инертные (аргон) и активные (углекислый) газы (табл. 5).  [c.150]

При дуговой сварке штучными электродами при плавлении обмазки образуется шлак, который покрывает металл шва. Зона сварки защищается при этом также парами металла и компонентов покрытия. Защиту осуществляют инертными (аргон, гелий) или активными (углекислый газ, водяной пар) газами или их смесями. Эти способы дуговой сварки называют сваркой в защитных газах, или газоэлектрической сваркой. Она может выполняться плавящимся или неплавящимся электродом.  [c.8]


Образование шва происходит за счет расплавления кромок основного металла или дополнительно вводимого присадочного металла. В качестве защитных газов применяют инертные (аргон и гелий) и активные (углекислый газ, водород, кислород и азот) газы, а также их смеси (Аг + Не Аг + СО2 Аг + О2 СО2 + О2 и др.). По отношению к электроду защитный газ можно подавать центрально или сбоку (рис. 3.37). Сбоку газ подают при больших скоростях сварки плавящимся электродом, когда при центральной защите надежность защиты нарушается из-за обдувания газа неподвижным воздухом. Сквозняки или ветер при сварке, сдувая струю защитного газа, могут резко ухудшить качество сварного шва. В некоторых случаях, особенно при сварке вольфрамовым электродом, для полу-  [c.121]

Сварка в защитных газах. В качестве защитных используют инертные (аргон, гелий) и активные (углекислый) газы, а также различные смеси инертных или активных газов и инертных с активными. Этот способ сварки по сравнению с рассмотренными выше имеет ряд существенных преимуществ. Его можно использовать для соединения металлов широкого диапазона толщин - от десятых долей до десятков миллиметров. При сварке толстых металлов в некоторых случаях этот способ сварки может конкурировать с электрошлаковой сваркой.  [c.374]

Дуговая сварка в защитных газах осуществляется как в среде инертных, так и активных газов. В качестве инертных газов применяют аргон и гелий, а в качестве активных — углекислый газ,  [c.317]

Защита расплавленного и нагретого до высокой температуры основного и электродного металла от вредного влияния кислорода, азота и водорода атмосферного воздуха осуществляется защитными газами. В качестве защитных используют активные или инертные газы либо смеси газов. Активные газы (азот, водород, углекислый газ) растворяются в металлах или вступают с ними в химическое взаимодействие Инертные газы (гелий, аргон) выполняют функции защитного газового слоя и ие вступают в химическое взаимодействие с основным или электродным металлом.  [c.206]

Защитные газы подразделяются на две основные группы инертные (аргон и гелий) и активные (углекислый газ и азот).  [c.63]

При сварке плавящимся электродом газ в зону дуги подают так же, как и при дуговой сварке неплавящимся электродом. Дуга поддерживается между электродной проволокой и свариваемым металлом. В качестве защитных газов применяют инертные (аргон и гелий) и активный (углекислый) газы. Инертные газы используют при сварке высоколегированных сталей и цветных металлов, углекислый газ — при сварке углеродистых и легированных сталей. Сварку выполняют автоматическим и полуавтоматическим способами.  [c.7]


ЗАЩИТНЫЙ ГАЗ (в сварочном производстве) — газ, вводимый в зону сварки для защиты. В качестве 3. г. обычно используются инертные газы — аргон и гелий, а также активные газы — углекислый газ, азот и др., взаимодействующие с жидким металлом. Могут быть применены защитные смеси. Из инертных газов наибольшее распространение получил аргон, из активных — углекислый газ.  [c.49]

Широко применяют в качестве защитных сред инертные (аргон, гелий) и активные газы (водород, реже углекислый газ). Состав защитного газа подбирают исходя в первую очередь из химической активности системы металл -газ в условиях сварки.  [c.512]

Дуговая сварка в защитном газе— сварка, при которой в зону дуги подается защитный газ. При этом способе сварки (рис. , г) в зону дуги поступает инертный (аргон, гелий) или активный (углекислый) газ 9, который защищает плавильное пространство от контакта с атмосферным воздухом. Электрод применяется плавящийся (проволока) или неплавящийся (вольфрамовый стержень).  [c.6]

На фиг, 3, ж приведена схема сварки плавящимся электродом в среде углекислого га а. Углекислый газ в отличие от аргона является в условиях сварки активным газом (окислителем). Поэтому углекислый газ защищает зону сварки лишь от азотирования, а раскисление сварочной ванны производится путем применения легированной проволоки. Сварка плавящимся электродом в среде защитных газов выполняется только автоматами или полуавтоматами.  [c.10]

Сварку в защитных газах осуществляют при вдувании в зону дуги через сопло горелки струи защитного газа. В качестве защитных применяют газы инертные (аргон, гелий), активные (углекислый газ, кислород, азот, водород) и их смеси (Аг + О2, Аг + СО2, Аг + О2 + СО2 и др.).  [c.114]

При сварке в защитных газах особенности подготовки соединений зависят от вида и диаметра электрода (плавящийся или неплавящийся) и вида защитного газа (активный или инертный). ГОСТ 14771—69 обычно руководствуются при сварке проволокой диаметром от 1,6 мм и выше. Стандарт предусматривает сварку металла толщиной до 120 мм (в углекислом газе) с обязательной разделкой кромок металла толщиной свыше 10 мм. При этом уменьшены углы разделки до 40 и величина притупления до 1—2 мм при зазорах в пределах О—3 мм.  [c.14]

В качестве защитных газов применяют инертные газы (аргон и гелий) и активные газы (углекислый газ, азот, водород и др.), иногда — смеси двух газов или более. В нашей стране наиболее распространено применение аргона Аг и углекислого газа СО2.  [c.195]

Активными защитными газами называют газы, вступающие в химическое взаимодействие со свариваемым металлом и растворяющиеся в нем (углекислый газ,, водород, пары воды и др.).  [c.54]

Основным активным защитным газом является углекислый газ, который поставляется по ГОСТ 8050—76 Двуокись углерода газообразная и жидкая . Для сварки используют сварочный углекислый газ чистотой 99,5%.  [c.54]

Газовый конденсат. По диэлектрическим свойствам газовый конденсат близок к нефти, однако при наличии сероводорода, углекислого газа, кислорода, воды он становится коррозионно-активным. В отличие от нефти он не содержит природных компонентов, обладающих защитными свойствами, поэтому его коррозионная агрессивность проявляется особенно интенсивно.  [c.166]

Чтобы избежать высокотемпературного окисления при термообработке активных металлов, часто используют защитную атмосферу, состоящую из азота с низким содержанием водорода, углекислого газа и оксида углерода.  [c.65]

Кроме указанных металлов, для изготовления защитных оболочек могут быть использованы также керамические и металлокерамические материалы, обладающие вполне удовлетворительной стойкостью в углекислом газе при высокой температуре. В качестве конструкционных материалов, из которых сооружается активная зона реактора, охлаждаемого угольной кислотой, чаще всего используются алюминий и его сплавы, графит и нержавеющие стали. Высокая коррозионная стойкость алюминия даже во влажном углекислом газе (рис. У-18) объясняется его хорошими пассивными свойствами и способностью образования на его поверхности достаточно прочных защитных пленок. Алюминий может быть использован в условиях работы реактора, охлаждаемого углекислым газом вплоть до температуры 300° С. Существенный недостаток его — взаимодействие с ураном.  [c.334]


Защитные смеси из инертных и активных газов применяются преимущественно при сварке плавящимся электродом. Оптимальные смеси аргона с углекислым газом и кислородом позволяют осуществлять процесс сварки с очень небольшим разбрызгиванием и получать швы с хорошим формированием, внешним видом и плавным переходом к основному металлу. В зависимости от состава электродной проволоки и  [c.54]

Разновидностью рассматриваемого вида сварки является дуговая сварка порошковой проволокой в углекислом газе. Результатом совместного взаимодействия трех фаз (жидкого металла, защитного активного газа и жидкого шлака) успешно решаются возможности получения швов заданного состава, качества и свойств. По сравнению со сваркой в СО2 проволокой сплошного сечения применение способа сварки порошковой проволокой в углекислом газе уменьшает разбрызгивание электродного металла, способствует повышению пластичности металла швов. Порошковая проволока вместо проволоки сплошного сечения при сварке в СО2 используется при изготовлении ответственных сварных конструкций.  [c.58]

Дуговая сварка в защитном газе. При этом способе защита расплавленного металла от взаимодействия с воздухом осуществляется инертными газами (аргоном) или активными газами (углекислым газом).  [c.331]

В качестве защитных газов применяют инертные и активные газы (водород, окись углерода или их смесь с азотом). Наибольшее распространение получили аргоно-дуговая сварка и сварка в среде углекислого газа.  [c.474]

В качестве защитных газов применяются чистые аргон и гелий, смеси их между собой, а также смесь с некоторыми активными газами (водородом, кислородом и углекислым газом).  [c.315]

В качестве защитных газов применяют инертные газы (аргон и гелий) и активные (СОг, N2, Нг), а также смеси инертных и активных газов. Иногда с целью экономии расхода инертных газов и получения необходимых технологических свойств защитной среды применяют горелки с двумя концентрическими потоками газов. При этом внутренний поток создается аргоном или гелием, а наружный — азотом или углекислым газом.  [c.220]

Применяемые при сварке защитные газы можно разделить на две основные группы инертные газы (аргон и гелий) и активные газы (углекислый газ и азот). Для экономии дефицитных инертных газов может применяться комбинированная газовая защита, при которой  [c.313]

Активными называют газы, вступающие в химическое взаимодействие со свариваемым металлом и растворяющиеся в нем. По свойствам различают три группы активных газов с восстановительными свойствами (водород, оксид углерода) с окислительными свойствами (углекислый газ, водяные пары) выборочной активности (азот активен к черным металлам, алюминию, но инертен к меди и медным сплавам). Основным активным защитным газом является углекислый газ.  [c.105]

Наиболее распространенной разновидностью дуговой сварки в защитных газах является сварка в среде аргона, гелия и углекислого газа. Иногда применяют смеси инертных и активных газов, например аргона с кислородом, азотом, водородом или углекислым газом.  [c.621]

В качестве защитных газов применяют чистые аргон и гелий (инертные газы), углекислый газ, а также смеси аргона и гелия с активными газами (углекислым газом, азотом, кислородом,водородом).  [c.90]

Техника сварки плавящимся электродом, В зависимости от свариваемого материала, его толщины и требований, предъявляемых к сварному соединению, в качестве защитных газов используют инертные, активные газы или смеси защитных газов (см. табл. Х1.1). Ввиду более высокой стабильности дуги применяется преимущественно постоянный ток обратной полярности от источников с жесткой внешней характеристикой. Помимо параметров режима на стабильность горения дуги, форму и размеры шва большое влияние оказывает характер расплавления и переноса электродного металла в сварочную ванну. Характер переноса электродного металла зависит от материала и диаметра электрода, состава защитного газа и ряда других факторов. Рассматривая процесс сварки в углекислом газе, можно отметить, что при малых диаметрах электродных проволок (до 1,6 мм) и небольших сварочных токах при короткой дуге с напряжением до 22 В процесс идет с периодическими короткими замыканиями, во время которых электродный металл переходит в сварочную ванну. Частота замыканий достигает 450 в 1 с. При этом потери на разбрызгивание обычно не превышают 8% (область А на рис. XI.15). При значительном возрастании сварочного тока и увеличении диаметра электрода (область В на рис. XI.15) процесс идет при длинной дуге с образованием крупных капель без коротких замыканий. Область Б является переходной, в которой возможно появление крупных капель и их переход с короткими замыканиями и без них. При сварке на режимах областей Б к В обычно ухудшаются технологические свойства дуги и, в частности, затрудняется переход электродного мета.пла в сварочную ванну при сварке в потолочном положении. Дуга недостаточно стабильна, а разбрызгивание повышено.  [c.311]

В качестве защитной среды применяют инертные и активные газы (аргон, гелий, азот, углекислый газ). Практическое применение получили аргоно-дуговая сварка и сварка в среде углекислого газа.  [c.278]


В качестве защитных газов применяют аргон и гелий, которые не вступают в химические реакции и не растворяются в металлах. Кроме того, применяются активные газы углекислый газ, азот и смеси аргона и углекислого газа, взаимодействующие в разной степени с расплавленным металлом.  [c.279]

Наплавку металлов осуществляют при помощи электродных материалов с использованием флюсов или защитных газов. Для наплавки применяют электроды, цельнотянутую и порошковую проволоки, холоднокатаную, порошковую и спеченную ленты, неплавящпеся вольфрамовые и угольные электроды, порошки и литые прутки. Флюсы подразделяют на плавленые и керамические, а защитные газы — на активные (углекислый газ) и нейтральные (аргон, гелий).  [c.47]

Взаимодействие расплавленного металла с газовой фазой определяется составом атмосферы дуги и химичеср1ми свойствами элементов, содержащихся в расплавленном металле. Атмосфера дуги состоит из смеси газов О2, N2, Нг, СО, СО2, паров воды, металла и шлака. О2, N2, Н2 попадают в нее в основном из воздуха, а также из сварочных материалов (сварочной проволоки, покрытий электродов, флюсов и защитных газов). Дополнительным источником О2 и Н2 могут быть ржавчина, органические загрязнения и конденсированная влага на поверхности проволоки и свариваемого металла. СО2 и СО образуются в результате разложения в дуге компонентов покрытий электродов и флюсов. В случае сварки в защитной атмосфере углекислого газа они составляют основу атмосферы дуги. Количественное соотношение и парциальное давление газов зависят от вида сварки и применяемого способа защиты сварочной ванны. При высокой температуре дуги основная часть г ов диссоциирует и переходит в атомарное состояние. При этом их химическая активность и способность к растворению в расплавленном металле повышаются.  [c.227]

Дуговая сварка в защитных газах выполняется электрической дугой плавяш.иися или не-плавящимся электродом (рис. 1.5) в последнем случае шов формируется за счет подачи в зону дуги присадочной проволоки или в результате расплавления отбортованных кромок заготовок. В качестве защитных используют инертные (аргон, гелий) илн активные (углекислый газ, азот, водород и др.) газы, а также смеси двух и более газов. Дуговая сварка  [c.7]

При сварке алюминия и его сплавов источником водорода является адсорбированный слой влаги на свариваемом основном металле и главным образом на присадочном металле в связи с его большой относительной поверхностью, участвующей в формировании металла шва. В этих случаях для аргоно-дуговой сварки алюминия и его сплавов необходимы тщательная очистка кромок свариваемого металла и специальная обработка присадки — электрополировка [43], вакуумная термообработка, окислительный отжиг. Используемые при сварке защитные газы — инертные (в частности аргон) и активные (углекислый газ) — стремятся максимально обезводородить — обезводить, высушить.  [c.94]

Несмо1ря на все большее применение специапьных сварочных технологий, сварка под флюсом и сварка в углекислом газе являются основными способами, наиболее широко применяемыми при изготовлении оболочковых констр> кций. Выбор того или иного способа по сути заключается в выборе защитной среды (газ или флюс) Сварку под флюсом экономически целесообразно применять для прямолинейных и кольцевых швов при длине более 200 мм в автоматическом варианте Механизированные способы сварки под флюсом из-за затруднений за наблюдением процесса применяют весьма ограниченно Ддя коротких и сложных по конфигурации, а также потолочных шнов п]эимсняют сварку в с )сдс активных газов (углекислом газе и смеси данного газа с кислородом и аргоном). Однако при выборе способа следует руководствоваться показателями технологичности, приведенными в табл. 1.2  [c.23]

Степень усвоения сварочной ванной хрома, кремния, марганца, титана и алюминия, а также углерода при сварке в углекислом газе аустенитными проволоками разных марок изучалась автором совместно с Д. А. Дудко и И. Н. Рублевским. Из полученных данных следует, что при содержании в проволоке 18— 25% Сг окисление этого элемента очень невелико. В этом отношении сварка в углекислом газе превосходит сварку открытой дугой покрытыми электродами. При содержании в проволоке до 1% Si и до 2% Мп окисление кремния не превышает 0,2—0,3%. Марганец окисляется и испаряется более интенсивно. Потери его достигают 0,3—0,5%. Если содержание кремния в проволоке превышает 2%, как и следовало ожидать, проявляется его повы-шенрюе сродство к кислороду и защитное относительно марганца действие. Окисление марганца в этом случае заметно ослабевает (не более 0,2%). Однако при высокой концентрации марганца (6—7%) окисление его усиливается абсолютные потери достигают 1 %. Но при этом практически прекращается окисление кремния — активность марганца возрастает. Относительно окисления титана уже говорилось. Угар его при сварке проволокой типа Х10Н77ТЗЮ не превышает 30%, но абсолютные потери составляют уже около 1%, а не 0,2—0,3%, как в случае сварки проволокой, содержащей примерно 0,5% Ti. Имеет место и некоторый 338  [c.338]

Для защиты зоны сварки используют инертные газы гелий и аргон, а иногда активные газы — азот, водород и углекислый газ. При.меняют также смеси отдельных газов в различных пропорциях. Такая газовая защита оттесняет от зонь сварки окружающий воздух. При сварке в монтажных условиях или в условиях, когда возможно сдувание газовой защиты,, используют дополнительные защитные устройства. Эффективность газовой защиты зоны сварки зависит от типа свариваемого соединения и скорости сварки. На защиту влияет также размер сопла, расход защитного газа и расстояние от сопла до изделия (оно должно быть 5—40 мм).  [c.219]

Электродуговая сварка в среде защитных газов. Особенность этого вида сварки в том, что электрическа%сварочная дуга горит в струе газа, защищающей металл от вредного воздействия окружающего воздуха. В качестве защитных применяют инертные и активные газы (водород, окись углерода или их смесь с азотом). Наибольшее распространение получили аргоно-дуговая сварка и сварка в среде углекислого газа.  [c.318]

Наплавка плавящимся электродом в защитном газе. Механизированная наплавка внутренних поверхностей глубоких отверстий, когда нужно исключить образоваЕше шлаковой корки на наплавленном валике, а также полуавтоматическая наплавка деталей сложной формы являются областями применения наплавки в защитном газе. Чаще всего применяется полуавтоматическая наплавка в углекислом газе. Электродом служит легированная проволока подходящего состава пли порошковая проволока. Поскольку углекислота окисляет химически активные примеси, в проволоку обязательно вводятся раскислители — кремний, титан и др. Разработаны составы порошковой проволоки для наплавки ряда легированных сталей [32].  [c.235]


Смотреть страницы где упоминается термин Газы защитные активные углекислый газ : [c.45]    [c.302]    [c.9]    [c.224]    [c.291]    [c.73]   
Технология электрической сварки металлов и сплавов плавлением (0) -- [ c.370 , c.372 , c.481 , c.482 , c.496 , c.614 , c.615 ]



ПОИСК



Газы активные

Газы активные защитные

Защитные газы

Углекислый газ



© 2025 Mash-xxl.info Реклама на сайте