Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Газы Истечение из большого сосуда

В сужающейся части скорость увеличивается от начального значения (если истечение газа происходит из большого сосуда — то от нуля) до скорости, равной  [c.171]

При установившемся адиабатическом обратимом истечении газа из большого сосуда скорость V в далеких от отверстия  [c.37]

Истечение газа из большого сосуда.  [c.692]

Истечение газов. Можно получить аналогичную приближенную формулу для оценки скорости истечения газа из большого сосуда через малое отверстие. Пусть давление и плотность газа в сосуде будут р. и атмосферное давление и плотность воздуха обозначим через р и рц. Будем полагать, что размеры сосуда настолько велики, что истечение можно рассматривать как установившееся и притом безвихревое движение (в некотором интервале времени) и что на достаточном расстоянии внутри сосуда от отверстия можно пренебречь скоростью газа.  [c.118]


Предположим, что из большого сосуда, в котором поддерживается постоянное давление, идеальный газ истекает через сопло с конечным сечением Fg в пространство с более низким давлением. Пусть параметры газа в сосуде равны соответственно ро, Vq, То, а скорость его Шо = 0 (рис. 149). Обозначим давление в пространстве, куда истекает газ, через ра, а скорость его истечения через Wg, причем примем, что конечное сечение сопла является одновременно и наиболее узким его сечением (суживающееся сопло). Состояние в конечном сечении будем характеризовать парамет- f Р, рами ре, Ve, Те- Для идеального газа с постоянной теп- ( лоемкостью справедливо V .  [c.231]

Как мы видели в 105, скорость потока газа, выходящего из отверстия в сосуде и находящегося иод давлением теоретически может достигать большого значения. Так, например, воздух, находящийся под давлением в одну атмосферу, имеет, согласно формуле (105.5), скорость истечения в пространство с нулевым давлением (вакуум), равную  [c.416]

Учебник проф. А. А. Радцига по многим особенностям заслуживает большого к себе внимания и подробного рассмотрения. Он содержит 299 страниц среднего формата, 144 рисунка, данных в приложении, и 18 решенных примеров. Учебник имеет 15 глав следующего наименования гл. 1—физические величины, входящие в уравнение термодинамики, их определения и измерения гл. 2— свойства идеальных газов гл. 3 — первый закон термодинамики гл. 4 — общие следствия из закона сохранения энергии гл. 5 —приложение первого закона к изучению свойств газа гл. 6 — второй закон термодинамики гл. 7 — приложение второго закона термодинамики гл. 8 — свойства насыщенных паров гл. 9 — частные случаи изменения состояния насыщенных паров гл. 10 — свойства перегретых паров процессы изменения состояния перегретого пара гл. 11 — необратимые процессы смешение паров истечение паров перетекание пара из одного сосуда в другой торможение пара гл. 12 — термодинамика идеальной паровой машины гл. 13 — влияние стенок цилиндра гл. 14 — расход пара в паровых машинах зависимость его от условий работы машины гл. 15 — воздушные газовые двигатели двигатель Дизеля.  [c.97]

При истечении газа из сосуда больших размеров через малое отверстие в беспредельное пространство с газом более низкого давления движение можно считать установившимся, если сосуд настолько велик (или отверстие настолько мало), что при достаточно длительном истечении газа изменением давления в сосуде на большом удалении от отверстия можно пренебречь.  [c.240]


Истечение из отверстия с острой кромкой происходит иначе (рис. 6-12). В сосуде на достаточно большом удалении от отверстия скорость газа равна нулю, а давление— Ро- За отверстием поддерживается давление ра<Ро-  [c.330]

Но из этого следует, что давление в выходном сечении сопла равняется внешнему давлению только при малых скоростях истечения, меньших скорости звука. При истечении газа из сопла со звуковой скоростью давление в выходном сечении сопла в зависимости от начального давления газа может быть как равным внешнему давлению р, так и большим. Чтобы убедиться в этом, рассмотрим истечение газа, находящегося в сосуде под постоянным давлением р, через суживающееся сопло во внешнюю среду, давление которой может меняться.  [c.307]

Этот вывод справедлив для любых начальных давлений газа как бы ни было велико по сравнению с внешним давлением р (т. е. давлением среды, в которую происходит истечение) начальное давление р , скорость газа на выходе из суживающегося сопла никогда не может стать больше критической скорости истечения, равной скорости звука в выходном сечении сопла. Однако из этого следует также, что давление в выходном сечении сопла равно внешнему давлению только при малых скоростях истечения, меньших скорости звука. При истечении газа из сопла со скоростью звука давление в выходном сечении сопла в зависимости от начального давления газа может быть как равным внешнему давлению р , так и большим. Для того чтобы убедиться в этом, рассмотрим истечение газа, находящегося в сосуде под постоянным давлением р, через суживающееся сопло во внешнюю среду, давление которой может меняться.  [c.334]

Но из этого следует, что давление в выходном сечении сопла равняется внешнему давлению только при малых скоростях истечения, меньших скорости звука. При истечении газа из сопла со звуковой скоростью давление в выходном сечении сопла в зависимости от начального давления газа может быть как равным внешнему давлению р, так и большим, чем р. Чтобы убедиться в этом, рассмотрим истечение газа, находящегося в сосуде под постоянным давлением р, через суживающееся сопло во внешнюю среду, давление р которой может меняться. При p —pi скорость 2=0, т. е. истечения газа не происходит. При p истечение газа, причем с уменьшением давления р, т. е. с увеличением перепада давлений pi—р, под действием которого происходит истечение газа, скорость истечения непрерывно возрастает, пока, наконец, не достигнет при некотором значении внешнего давления, которое мы назовем критическим давлением истечения рнр, критической скорости истечения Шкр=Сг. В этот момент, так же как 270  [c.270]

В данном учебном пособии рассмотрены задачи, посвященные определенным разделам гидравлики давлению жидкости на поверхности различного рода истечению жидкости из малых и больших отверстий сосудов разной формы при постоянном и переменном напорах определению работы, затрачиваемой при выкачивании жидкости, расширении и сжатии газа в цилиндре некоторые специальные вопросы гидравлики открытых русел и сооружений.  [c.3]

Аналогичными (с сосудами давления) условиями характеризуются и разрушения трубопроводов, в том числе магистральных для транспортировки жидкостей и газов. Возможность хрупкого разрушения трубопроводов на участках от 0,5-1 м до нескольких десятков километров обусловлена большими запасами упругой энергии, накопленной в стенках трубопроводов и рабочих телах, непрерывностью сварных швов, циклическим характером нагружения (10 < N < 5 1 O ), низкими температурами t эксплуатации (до -60°С) и местным аэродинамическим охлаждением за счет истечения газов в момент инициирования хрупких трещин. Учитывая сравнительно невысокую концентрацию напряжений (а = 1,1-1,6) на прямых участках трубопроводов, одними из основных причин хрупких разрушений трубопроводов следует считать повышенную чувствительность применяемых сталей к хладноломкости и наличие исходных дефектов сварки и технологических повреждений. В зонах компрессорных станций увеличивается число повреждений от вибраций.  [c.73]


Все вышеизложенное заставляет предполагать, что из-за большой кинетической энергии истечения газа из сопла при повышенном давлении картина образования пузырей должна существенно отличаться от той картины, которая наблюдается при истечении газа в условиях нормального давления и при одинаковом объемном расходе. Чтобы внести ясность в этот вопрос, были проведены опыты по насыщению воды гелием, азотом и аргоном под давлением от 0 до 80 атм. В качестве сопла была использована шайба диаметром 15 и толщиной 4 мм, в центре которой были просверлены отверстия диаметром от 1,05 до 1,64 мм. Шайба представляла собой горизонтальную крышку небольшой камеры давления диаметром 17 и высотой 40 мм. В эту камеру ниже стока воды был подведен газ. Камера ввинчивалась во фланец сосуда высокого давления объемом 2,5 л, внутренний диаметр которого составлял 90 мм. Внутри сосуда была установлена стеклянная вставка диаметром 75 мм, в которой уровень газируемой воды находился на высоте 200 мм от сопла. Выделяющийся газ собирали над жидкостью, дросселировали, а его расход измеряли мерными шайбами. Частоту образования пузырей измеряли осциллографом, к которому был подключен фотоэлемент. На этот фотоэлемент падал луч света  [c.387]

Выведите формулу Торричелли для скорости истечения жидкости из отверстия в сосуде. Поясните, почему скорость частиц жидкости имеет такую Же величину, как если бы они свободно падали с высоты Я (см. рис. 10.14). Покажите, что при вытекании газа под большим давлением скорость истечения обратно пропорциональна квадратному корню из плотности.  [c.284]

Если жидкость или газ находятся в сосуде под давлением, много большим, чем давление, создаваемое весом жидкости, то изменениями давления по высоте столба жидкости можно пренебречь и считать, что истечение подчиняется тем же законам, что и истечение жидкости, находящейся в замкнутом сосуде под давлением Рн- Поэтому можно просто определить скорость истечения воды из котла, в котором вода находится под постоянным давлением  [c.360]

Практическое применение уравнения Бернулли. Рассмотрим случай истечения газов через отверстие. Пусть из сосуда очень большого размера, в котором давление равно Pi н/м [мм вод. ст.], газ вытекает через отверстие сечением F со скоростью Ыг в среду с давлением Ро-  [c.44]

Пусть в сосуде, размеры которого предполагаются достаточно большими, находится сжатый газ, вытекающий наружу через сопло (фиг. Ю-2). Обозначим начальные параметры газа, т. е. его температуру, удельный объем и давление, через / ь р1 (значения их по условию стационарности поддерживаются постоянными) начальную скорость газа в сосуде — через гй)й давление внешней среды, в которую происходит истечение, — через р (р, конечно, меньше р ) температуру, давление, удельный объем и скорость газа на выходе из сопла, т. е. в выходном сечении его, через 2, Р2, Так как  [c.199]

Но из этого следует, что давление в выходном сечении сопла равняется внешнему давлению только при малых скоростях истечения, меньших скорости звука. При истечении газа из сопла со звуковой скоростью давление в выходном сечении сопла в зависимости от начального давления газа может быть как равно внешнему давлению р, так и больше р. Чтобы убедиться в этом, рассмотрим истечение газа, находящегося в сосуде под постоянным давлением Рь через суживающееся сопло во внешнюю среду,, давление р которой может меняться. При р =р1 Ш2 = 0, т. е. истечения газа не происходит. При р <р начинается истечение газа, причем с уменьшением давления р, т. е. с увеличением перепада давления р —р, под действием которого происходит течение газа,., скорость истечения непрерывно возрастает, пока, наконец, не достигнет при некотором значении внешнего давления, которое мы назовем критическим давлением истечения Ркр, критической скорости истечения и кр = С2. В этот момент, так же как и ранее при ш.2<гг)кр, давление Рз в выходном сечении сопла равняется внешнему давлению, т. е. Р2 = Р -Дальнейшее уменьшение давления среды р не приводит к увеличению скорости истечения, а следовательно,, и к изменению давления в выходном сечении сопла, которое остается все время равным Ркр.  [c.153]

Течение в сопле Лаваля (1). Рассмотрим возможные режимы истечения газа из сосуда больших размеров через сопло Лаваля (рис. 1.3.7) с заданными площадью минимального поперечного сечения (в горле) (5 и площадью выходного сечения  [c.60]

Очевидно, что если отношение давления в данном месте канала к давлению торможения больше критического, то скорость потока не может достигнуть скорости звука. В частности, чтобы получить сверхзвуковую скорость при истечении газа из сосуда через сопло Лаваля, нужно, чтобы отношение давления в окружающей среде к давлению в сосуде было меньше, чем критическое отношение давлений  [c.174]

Истечение газа из большого сосуда. Пусть газ вытекает через сужа-  [c.521]

Таким образом, все параметры среднего поступательного потока со скоростью V и с плошадью сечения Е можно рассматривать как величины, получаюгциеся при истечении газа через насадок плогцади Е с расходом Q из большого сосуда, в который исходный неравномерный поток переведен обратимым путем без притока энергии извне.  [c.28]

Все приведенные соотношения приближенно справедливы и для истечения из непрофилированных специально сопл, например из отверстий в сосуде, находящемся под давлением. Скорость истечения из таких отверстий не может превысить критическую, определяемую формулой (5.19), а расход не может 6biTii больше определяемого по (5.20 при любом давлении в сосуде. (Из-за больших потерь на завихрения в этом случае расход вытекающего газа будет меньше рассчитанного по приведенным формулам).  [c.48]


После вывода этого уравнени,т записано ... эта формула, дающая скорость вытекания газа через малые отверстия из сосуда больщой вместимости, показывает, между прочим, следующее 1) так как величины для различных газов обратно пропорциональны их плотностям, то скорость вытекания газа при прочих обстоятельствах одинаковых будет тем больше, чем газ легче 2) скорость истечения газа будет тем больше, чем выше его абсолютная температура в сосуде скорость вытекания газа будет тем больше, чем меньше давление Р1 среды, в которую он вытекает, сравнительно с давлением внутри сосуда.  [c.54]

Для иллюстрации рассмотрим газ, помещенный в сосуд в виде куба с идеально отражающими стенками. Предположим, что первоначально молекулы газа распределены произвольным образом внутри сосуда и все они имеют точно одну и ту же скорость, направленную параллельно одному из ребер куба. Если взаимодействие между молекулами газа отсутствует, то это распределение будет существовать неограниченно долго и никогда не перейдет в распределение Максвелла — Больцмана. Для такого газа термодинамика несправедлива. Но если существует взаимодействие между молекулами, то, каким бы малым оно ни было, первоначальное распределение вследствие столкновений будет изменяться с течением времени. Поскольку почти каждое состояние газа обладает распределением Максвелла — Больцмана, то разумно ожидать, что по истечении достаточно большого промежутка времени, зависящего от сечения рассеяния молекул, начальное распределение превратится в распределение Максвелла — Больцмана. Из приведенных рассуждений нельзя заключить, насколько велик этот промежуток времени. Они лишь позволяют укамть, каково будет равновесное распределение, если равновесие будет достигнуто.  [c.99]

Пусть состояние газа внутри сосуда меняется по закону рг. " = = onst (где Шп — показатель политропного процесса изменения состояния рабочего тела в сосуде при одновременном изменении массы этого вещества). Значение показателя т зависит от целого ряда причин и прежде всего от наличия теплообмена через стенки сосуда с окружающей средой. При быстром истечении газа из сосуда, когда отверстие, из которого происходит истечение, велико по сравнению с объемом сосуда и когда, следовательно, теплообмен незначителен, показатель т может приниматься равным показателю адиабаты k. Напротив, при очень малом отверстии и большом объеме сосуда, т е. при медленном истечении, значение /п близко к единице (изотермное истечение).  [c.253]

В учебном пособии рассмотрены математические приеш решения задач некоторых разделов гидравлики /технической гидромеханики/ давление жидкости на поверхности истечение жидкости из малых и больших отверстий сосудов различной ( ормы при постоянном и переменном напорах определение работы, эапрачиваемой при выкачивании жидкости, расширении и сжатии газа в цилиндре специальные вопросы гидравлики открытых русел и сооружений.  [c.2]


Смотреть страницы где упоминается термин Газы Истечение из большого сосуда : [c.90]    [c.646]    [c.528]    [c.141]    [c.141]    [c.908]    [c.361]    [c.6]    [c.31]   
Справочник машиностроителя Том 6 Издание 2 (0) -- [ c.2 , c.52 ]

Справочник машиностроителя Том 1 Изд.2 (1956) -- [ c.2 , c.52 , c.521 ]



ПОИСК



Газ Истечение из большого сосуда

Истечение

Истечение газа

Истечение газа из сосуда

Истечение газов

Истечение из сосуда

Сосуды



© 2025 Mash-xxl.info Реклама на сайте