Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Медь, влияние на процесс резки

Медь, влияние на процесс резки 386  [c.769]

Медь При содержании до 0,7 /о влияния на процесс резки не оказывает  [c.429]

Медь. При содержании до 0,7% на процесс резки влияния не оказывает. Чистая медь не разрезается.  [c.79]

Медь. При содержании в небольших количествах (до 0,7%) медь на процесс резки стали заметного влияния не оказывает.  [c.312]

Большое влияние на процесс оксидирования меди оказывает температура. С повышением температуры раствора резко возрастает скорость образования окисной пленки (рис. 79), но при этом увеличивается количество металла, переходящего в раствор, и скорость разложения окислителя. По этой причине  [c.247]


Заметное влияние на указа -ные характеристики меди оказывает и температура. При нагревании (особенно выше 200 °С) в результате процесса рекристаллизации (рис. 4.7) механические характеристики и удельное сопротивление меди резко изменяются.  [c.120]

Скорость резания толстых листов растет с увеличением мощности лазера и зависит от толщины листа и теплопроводности металла. При мощности лазера около 400—600 Вт можно резать черные металлы и титан со скоростью порядка нескольких метров в минуту, в то время как резка металлов с высокой теплопроводностью (медь, алюминий) представляет определенную трудность. В литературе имеется достаточное количество информации о существенном влиянии энергии химической реакции на скорость резки и чистоту кромок, однако сложность процесса не позволяет произвести какие-либо количественные оценки, тем более что неизвестны состав конечных продуктов окисления, доля капельной фракции металла, выдуваемого струей газа, и скрытая теплота фазовых переходов (плавление, испарение).  [c.122]

Алюминий и алюминиевые сплавы в общем случае обработки близки по износу к меди, стабильность процесса при использовании алюминиевых электродов несколько ниже, чем медных, причем диапазон обрабатываемых материалов и режимов обработки уже по сравнению с медными электродами. На износ электродов-инструментов из алюминия и его сплавов оказывает большое влияние конфигурация рабочей части. На узких выступающих элементах рабочей части электрода износ резко возрастает. Большое влияние на износостойкость электродов-инструментов из алюминия и его сплавов оказывает плотность материала. Лучшие показатели по износостойкости получаются при уплотнении материала прокаткой, прессованием, ковкой.  [c.207]

Естественно, что примеси в сталях оказывают влияние на способность подвергаться кислородной резке, причем разные элементы в разной степени. Влияние углерода сказывается при со держании его свыше 0,25 % марганец, никель и медь в тех количествах, в которых они содержатся в сталях, не мешают выполнению резки. Кремний, алюминий и хром по мере их увеличения в стали ухудшают процесс резки.  [c.400]

В работах Ю. М. Полукарова с сотр. [82] установлено, что увеличение перенапряжения катода при электроосаждении меди вызывает переход от слоисто-спирального роста осадка к образованию и росту двумерных зародышей с появлением дефектов упаковки двойникового типа добавки к электролиту меднения поверхностно активных веществ резко повышают вероятность образования дефектов упаковки, увеличивают искажения кристаллической решетки и плотность дислокаций. Заряд двойного электрического слоя ускоряет процессы возврата в тонких осадках меди (эффект Ребиндера), приводящие к появлению внутренних напряжений растяжения. Влияние электрохимических условий осаждения на состояние кристаллической решетки осадков становится определяющим при достаточно большой толщине осажденного слоя на пластически деформированной монокристал-лической подложке дефектность слоев осадка постепенно уменьшалась при утолщении слоя, а при росте осадка на подложке из граней совершенного монокристалла, наоборот, увеличивалась до значений, соответствующих условиям электролиза.  [c.93]


При наличии открытой пористости, обеспечивающей газопроницаемость изделий, решающее влияние на формирование насьпценного слоя оказывает проникновение насыщающей среды вглубь изделия по открытым порам. В этом случае насыщение происходит практически по всему объему изделия, однако степень насыщения весьма неравномерна, и наиболее насьпценными, безусловно, являются поверхности пор. Так как процесс насыщения начинается в устьях пор, то по мере течения процесса насыщения, площадь их сечения уменьшается, что затрудняет процесс проникновения активной среды вглубь детали, и процесс постепенно затухает. Наиболее полно процесс залечивания пор протекает в условиях насыщения детали элементами, близкими по своей природе к железу, — хромом, никелем, ванадием, марганцем, другими переходньпйи металлами и медью. Насыщение элементами, резко отличающимися от железа, — алюминием, кремнием, углеродом и азотом, не приводит к полному залечиванию пор, а лишь несколько уменьшает их сечение.  [c.482]

Выбор материала и конструкции разрядного канала. Керамика из AI2O3 широко применяется в вакуумной технике, в том числе и при высоких температурах [177]. И тем не менее даже в настоящее время трудно иметь полное представление о ее поведении в процессе длительного срока службы при воздействии различных факторов (температуры, среды, нагрузок и т.д.). В работе [178] показано, что наиболее сильное влияние на свойства керамики оказывает высокая температура при длительном нагреве изменяется ее микроструктура — происходит так называемое термическое старение. Этот процесс связан с рекристаллизацией (ростом кристаллов) керамики, сопровождающейся уменьшением ее кажущейся плотности, прочности, термостойкости, теплопроводности, ползучести и испарения. Керамика из окиси алюминия подвергается существенному старению даже при относительно невысоких температурах, если время нагрева составляет тысячи часов. Термическая обработка (выдержка) корундовой керамики при 1300 °С в течение 500, 1000 и даже 2000 ч практически не приводит к заметному изменению ее структуры. Нагрев до 1700°С вызывает резкие изменения уже в первые часы работы. Установлено [178], что прочность спеченной керамики после нагрева в вакууме при 1900 °С в течение 10 ч снижается примерно в четыре раза, при этом размер кристаллов увеличивается в шесть раз. Поэтому керамика А-995, работающая в АЭ на парах меди при температурах 1500-1600 °С, с целью сохранения ее свойств предварительно подвергается обжигу при более высоких температурах. В нашем случае температура обжига составляет (1700 20) °С.  [c.37]

Влияние скорости деформации. При выполнении технологических операций ковки и штамповки скорости деформации изменяются в широком диапазоне. Наименьшие скорости деформации (lO 1/с) можно наблюдать при штамповке на прессах, а наибольшие — (10 1/с) —при штамповке на высокоскоростных молотах. В литературе имеется много противоречивых сведений о влиянии скорости деформации на сопротивление пластическому деформированию, в том числе и применительно к холодной штамповке выдавливанием. Это объясняется тем, что при увеличении скорости деформации наблюдаются два взаимно противоположных эффекта. Во-первых, при увеличении скорости деформации повышается температура заготовки, поскольку с быстротечностью процесса резко уменьшается рассеяние (отвод) теплоты от заготовки, а с повышением температуры уменьшается напряжение текучести. Во-вторых, при повышении скорости деформации сопротивление деформированию возрастает из-за необходимости преодоления инерционных нагрузок. В результате взаимодействия этих явлений можно наблюдать различное проявление влияния скорости деформации. Так, В. Е. Фаворский при скоростях выдавливания 0,5 м/с наблюдал повышение температуры для алюминия до 230 С, для меди до 380° С и для сталей 10 и 15 до 410° С, что во многих случаях сопровождалось понижением сопротивления деформированию и увеличением пластичности. Экспериментальные исследования, выполненные В. Ф. Ураковым, показывают повышение температуры не более 120° С. Он пришел к выводу, что при скоростях деформирования в пределах 4 — 20 м/с выдавливание осуществляется в адиабатических условиях. Напряжение текучести при переходе от статических условий нагружения (0,002 м/с) к динамическим (4 м/с) возрастает для алюминия на 15%, а для свинца увеличивается в 2,5 раза.  [c.20]


На рис. 1-3 представлена схема проточной части турбины 300 Мет — К-300-240, а на рис. 1-4 — процесс расширения пара в турбине. Отлолсения на лопатках турбины приводят к снижению ее мощности, причем с повышением начального давления пара проходные сечения уменьшаются и влияние отложений сказывается сильнее. Кроме того, переход к сверхкритическим давлениям снял возможность вывода примесей из котлоагрегата, которая для турбин докритических давлений обеспечивала некоторую ее защиту от загрязнений. В то же время сверхкритические давления способствовали резкому возрастанию растворимости в паре различных примесей, что не только повысило их вынос в турбину, но и создало реальную опасность загрязнения головной части машины при срабатывании перепада до давлений, при которых растворимость примесей существенно меньше. В этом отношении весьма характерно поведение окиси меди. На рис. 1-5 представлены расчетные данные по ее растворимости в паре различных параметров. Как видно, растворимость этого соединения резко уменьшается с понижением давления пара, что обусловливает достаточно жесткие требования к нормированию качества питательной воды блоков сверхкритических давлений по этому показателю.  [c.8]

Присутствие в растворах щелочных сульфидов вызывает образование пленок сульфидов цинка и свинца, которые покрывают поверхность цинка и препятствуют цементации благородных металлов. Процесс осаждения резко ухудшается, даже при небольших концентрациях мышьяка в растворах. Причина отрицательного действия мышьяка — образование на цинке изолирующих пленок арсената кальция. Вредное влияние оказывает также коллоидная крем-некислота, образующая в присутствии извести пленку силиката кальция. Свинец, если он присутствует в растворе в форме плюмбит-иона, также снижает активность цинка, образуя па нем пленки плюмбита кальция. Медь, находящаяся в цианистых растворах в виде аниона u( N)3 . легко вытесняется цинком  [c.171]

В [6] дополнительного списка литературы приводятся также данные об улучшении некоторых других свойств термопластов при их наполнении. В табл. 1.2 перечислено большинство технически важных термопластов с указанием типичных наполнителей и свойств, которые улучшаются при наполнении. Полиамид 66 является хорошим примером термопласта, практически все свойства которого улучшаются при введении 20—40% стеклянного волокна. Особенно резко возрастают модуль упругости, прочность при растяжении, твердость, устойчивость к ползучести, теплостойкость при изгибе. Термический коэффициент линейного расширения также уменьшается, причем особенно резко в направлении ориентации волокон и становится соизмерим с соответствующими коэффициентами для меди, алюминия, цинка, бронзы и т. п. (В [7] дополнительного списка литературы приведены данные о всех свойствах наполненного и ненаполненного стеклянным волокном полиамида 66). Наполнение полиамидов 30—40% стеклянных микросфер в 8 раз повышает их прочность при сжатии при одновременном возрастании модуля упругости и прочности при растяжении. Эти материалы обладают лучшими технологическими свойствами по сравнению с полиамидами, наполненными стеклянным волокном. Кроме того стеклосферы не разрушаются в процессе переработки. На другие термопласты, такие как полистирол, сополимеры стирола и акри-лонитрила, поликарбонат наполнители оказывают менее упрочняющее влияние по сравнению с полиамидами.  [c.26]


Смотреть страницы где упоминается термин Медь, влияние на процесс резки : [c.125]    [c.523]    [c.83]    [c.133]    [c.171]    [c.266]    [c.38]    [c.607]   
Справочник по специальным работам (1962) -- [ c.386 ]



ПОИСК



Влияние N-процессов

Медиана

Медь резка

Медь, влияние на процесс резки ч— выбор метода сварки



© 2025 Mash-xxl.info Реклама на сайте