Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Инварианты Уравнения при деформации плоско

Рассмотрим теперь чисто деформационную компоненту вторичных течений. Типичным примером двумерного течения с чистой деформацией является соударение двух плоских струй, движущихся навстречу друг другу. Для этого течения существует аналитическое решение уравнений Навье-Стокса в критической точке. Направив ось Х1 по нормали к плоскости течения, имеем III =0, 112 = Кх2 11з = —Кх . В этом случае иох = 8112/дх 811 /8x2 = 0, а инвариант тензора скоростей деформации равен 5 = О.ЬЗктЗкт = Из уравнений (3.2) и (3.3) получается  [c.584]


Мотивация для включения в модельное уравнение слагаемых, содержащих Ащ + N2, связана с рассмотрением осесимметричных течений. Известно [15], что осесимметричные течения отличаются от плоских структурой крупномасштабных вихрей. Если в плоской струе доминирует антисимметричная мода колебаний, то в осесимметричной - первая азимутальная мода. Поэтому важно найти безразмерные критерии, описывающие отличательные особенности осесимметричных течений. Одна из попыток введения критерия такого рода предпринята в [16], где с целью модификации двухпараметрической модели турбулентности предложено использовать один из инвариантов (детерминант) тензора скоростей деформаций. Попытки использовать этот прием для улучшения однопараметрической модели для турбулентной вязкости оказались неудачными.  [c.444]

Включен ряд новых результатов, касающихся трехмерных уравнений математической теории пластичности с условием пластичности Треска и ассоциированным с ним законом течения для напряженных состояний, соответствующих ребру поверхности текучести. Найдена замечательная инвариантная векторная форма уравнений равновесия, позволяющая исследовать геометрию поля главных направлений, соответствующих наибольшему (наименьшему) главному напряжению. Дана классификация решенией трехмерных статических уравнений в зависимости от завихренности указанного поля главных направлений. Найдены инварианты, сохраняющие свои значения вдоль линий главных напряжений. Дан анализ трехмерных уравнений математической теории пластичности для приращений напряжений и деформаций в ортогональных нзо-статнческнх координатах. С помощью новых подходов проведен анализ плоской и осесимметричной задачи. Исследованы автомодельные решения осесимметричной задачи математической теории пластичности и получены новые автомодельные решения, обобщающие известные решения Шилда.  [c.2]


Прочность, устойчивость, колебания Том 1 (1968) -- [ c.76 , c.77 ]



ПОИСК



Деформации Уравнения

Инвариант

Инварианты деформаций

Плоская деформация



© 2025 Mash-xxl.info Реклама на сайте