Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коэффициент оптико-механический

Заслуживает внимания еще один аспект оптико-механической аналогии. В заданной области пространства могут распространяться световые колебания различных частот. Может случиться так, что коэффициент преломления п зависит от частоты. Это явление называется дисперсией . При наличии дисперсии первоначальный волновой фронт оптических приборах это явление называется хроматической аберрацией . Явлению дисперсии в оптике тоже может быть предложена соответствующая механическая аналогия. Механические траектории, начинающиеся перпендикулярно базисной поверхности S = О, могут несколько различаться по своей полной энергии Е. Это происходит, например, в электронном микроскопе, где тепловое движение электронов вызывает небольшой разброс значений их полной начальной энергии Е. Это приводит к дисперсии и к небольшой хроматической аберрации в картине, получаемой с помощью электронного микроскопа.  [c.312]


Задача 3. Пронормируем массу движущейся частицы и скорость света таким образом, чтобы они стали равны 1. Тогда из уравнения оптико-механической аналогии (8.7.18) получим п = v. Скачкообразному изменению коэффициента преломления на границе двух  [c.313]

Величины оптико-механических постоянных — модуля упругости Et и относительного оптического коэффициента а — после проведения цикла замораживания напряженного состояния исследуемых моделей стабильные в течение первых 20 сут.  [c.273]

В оптико-механическом производстве при холодной штамповке мелких деталей из полосы или из отдельной заготовки ручные приемы работы занимают значительное время и намного снижают коэффициент использования прессового оборудования, а следовательно, и производительность труда.  [c.346]

Используя оптико-механическую аналогию, найти траектории светового луча в среде с коэффициентом преломления п х, у, z) = + +  [c.223]

Теперь рассмотрим полуэмпирический метод оценки коэффициента оптической чувствительности по напряжению С , предложенный в работе [91]. Дело в том, что описанная выше расчетная схема для определения С , позволяющая с достаточно высокой точностью определить полимера по химическому строению повторяющегося звена, не устанавливает связи между и другими оптико-механическими показателями (модулем упругости, температурой стеклования и др.). Проведем сначала анализ в общем виде.  [c.243]

Это касается также и общего выбора материалов при конструировании оптико-механических приборов с учетом коэффициентов расширения и трения.  [c.37]

А это ие что иное, как принцип Якоби (см. гл. V, п. 6), который снова оказался эквивалентным принципу наименьшего действия. Параллелизм между механическими и оптическими явлениями можно усмотреть уже из сравнения принципа Якоби с принципом Ферма, Принцип Якоби допускает оптическую интерпретацию, если консервативной механической системе поставить в соответствие оптическую среду с коэффициентом преломления, меняющимся пропорционально Ye— V. Эта аналогия может быть использована обеими науками. С одной стороны, канонические уравнения Гамиль-тона становятся применимыми в оптических задачах. С другой стороны, из оптики в область механики могут быть перенесены методы построения волновых фронтов Гюйгенса,  [c.311]

Для изучения оптико-механических характеристик полиуретанов из одной партии материала отливали одновременно несколько образцов [26, 55]. Технология изготовления образцов и натурных шин одинакова (-см. подразд. 2.2), Оптическую постоянную Оо определяли с помощью дисков, сжимаемых сосредоточенными силами вдоль диаметра. Для определения модуля упругости Е и коэффициента Пуассона р испытывали на растяжение плоские образцы сече-нпем 10x10 мм и длиной 100 мм. На сжимаемых по диаметр, ди -  [c.37]


В отличие от механических и оптико-механических тензометров проволочный датчик сопротивления обладает ценным свойством, дающим возможность дистанционных замеров их показаний. Характеристикой его является так называемый коэффициент тен-зочувствительности  [c.129]

При определении модуля упругости Е и коэффициента Пуассона V образец нагружается несколько раз — как минимум три раза при большом разбросе измеряемых величин его приходится нагружать 6—10 раз силой, при которой напряжения в образце не превышают уровень первого перелома на диаграмме растяжения, т. е. не больше 20—25% от разрушающей нагрузки. При этом измеряются продольные и поперечные деформации образца при помощи механических (системы Аистова или Гугенбергера), оптико-механических (системы Мартенса) тензометров или датчиков сопротивления.  [c.73]

Опыты Майкельсопа и Морли. Противоположной точки зрения па проблему электродинамики и оптики движущихся сред придерживался Лоренц, который в своей теории исходил из предположения, что эфир совершенно неподвижен и не принимает никакого участия в движении материальных тел. Такое допущение предполагает отказ от механического принципа относительности в электродинамике и оптике и позволяет ввести абсолютную систему отсчета, связанную с неподвижным эфиром. Согласно Лоренцу движение тел сквозь эфир должно сопровождаться эфирным ветром , влияние которого можно обнаружить на опыте. Особенно интересными представлялись опыты в среде с показателем преломления и==1 (вакуум или воздух), так как для этого случая коэффициент увлечения а = 0.  [c.207]

ОПТИКА [ асферическая содержит элементы, поверхности которых, не имеют сферической формы просветленная обладает уменьшенными коэффициентами отражения света у отдельных ее элементов путем нанесения на них специальных покрытий) как оптическая система (волновая изучает явления, в которых проявляется волновая природа света волоконная рассматривает передачу света и изображений по световодам и пучкам гибких оптических волокон геометрическая изучает законы распространения света в прозрачных средах на основе представлений о световых лучах интегральная изучает методы создания и объединения оптических и оптоэлектронных элементов, предназначенных для управления световыми потоками квантовая изучает явления, в которых при взаимодействии света и вещества существенны квантовые свойства света и атомов вещества когерентная изучает методы создания узконаправленных когерентных пучков света и управления ими нелинейная изучает распространение мощных световых пучков в оптически нелинейных средах (твердые тела, жидкости, газы) и их взаимодействие с веществом силовая изучает воздействие на твердые тела интенсивного светового излучения, в результате которого может нарушаться механическая цельность этих тел статистическая изучает статистические свойства световых полей и особенности их взаимодействия с веществом тонких слоев изучает прохождение света через прозрачные слои вещества, толщина которых соизмерима с длиной световой волны физическая изучает природу света и световых явлений) как раздел оптики электронная занимается вопросами формирования, фокусировки и отклонения пучков электронов и получения с их помощью изображений под воздействием электрических и магнитных полей корпускулярная изучает законы движения заряженных частиц в электрическом и магнитном полях нейтронная изучае взаимодейс вие медленных нейтронов со средой) как раздел физики]  [c.255]

При распространении электромагнитного излучения в периодических средах возникает много интересных и потенциально полезных явлений. К ним относятся дифракция рентгеновского излучения в кристаллах, дифракция света на периодических изменениях механических напряжений, возникающих при прохождении звуковой волны, и запрещенная зона для света в слоистых периодических средах. Эти явления используются во многих оптических устройствах, таких, как дифракционные решетки, голограммы, лазеры на свободных электронах, лазеры с распределенной обратной связью, лазеры с распределенным брэгговским отражением, брэгговские отражатели с высокой отражательной способностью, акустооптические фильтры, светофильтры Шольца и т. д. В данной главе мы рассмотрим некоторые общие свойства электромагнитного излучения в периодических средах и общую теорию его распространения в слоистой периодической среде. Эта теория имеет весьма близкую формальную аналогию с квантовой теорией электронов в кристаллах и поэтому позволяет использовать понятия блоховских волн, запрещенных зон, затухающих и поверхностных волн. Наконец, мы обсудим применение этой теории для решения ряда хорошо известных задач, таких, как расчет коэффициента отражения от брэгговского зеркала, коэффициентов пропускания фильтра Шольца и оптических поверхностных волн. Кроме того, мы обсудим двойное лучепреломление за счет формы и его применение в дихроичных поляризаторах. Периодические структуры играют также важную роль в интегральной оптике, рассмотрение которой мы отложим до гл. 11.  [c.169]


Полидихлор- стирол 1 (стирамик) Любой Обладает повышенной на 40% (по сравнению с полистиролом) теплостойкостью, лучшей механической прочностью и весьма высокой химической стойкостью — устойчив к воздействию кисют и щелочей. Негорюч Как теплостойкий диэлектрик применяется для высокочастотных изоляционных деталей в радиотехнике, в оптике — для производства линз с высоким коэффициентом преломления. По ряду показателей конкурирует с керамикой, но отличается высокой стоимостью  [c.21]


Смотреть страницы где упоминается термин Коэффициент оптико-механический : [c.76]    [c.165]    [c.516]    [c.90]    [c.47]    [c.310]    [c.221]    [c.223]    [c.301]   
Теория упругости (1975) -- [ c.165 ]



ПОИСК



Коэффициент механический



© 2025 Mash-xxl.info Реклама на сайте