Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Отрыв потока толщина вытеснения

Заметим, что все вышеприведенные расчеты выполнены без учета нарастания пограничного слоя на обтекаемых поверхностях. Влияние пограничного слоя может быть учтено введением поправки в контур тела на толщину вытеснения б. Для этого необходимо применить какой-либо численный или интегральный метод расчета ламинарного или турбулентного пограничного слоя (гл. VI) совместно с изложенным выше методо<м сквозного счета. При наличии интенсивных скачков уплотнения в сверхзвуковом потоке возможен отрыв пограничного слоя (гл. VI, 6). Отрыв пограничного слоя приводит к картине течения в канале, существенно отличающейся от идеального расчета. Оставаясь в рамках приведенной выше методики расчета, можно попытаться в первом приближении учесть влияние отрыва на характеристики течения. С этой целью предлагается использовать зависимости для отношения давлений в зоне отрыва дг/ро и для длины отрывной зоны Ь/б (гл. VI, 6). При расчете течения методом сквозного счета от сечения, где начинается отрывная зона, как и в случае струи, на границе задается давление, равное давлению в зоне отрыва. Заметим также, что при расчете струи, вытекающей из сопла во внешний поток, возможно учесть влияние спутного потока, решая соответствующую задачу о взаимодействии двух сверхзвуковых потоков на границе струи.  [c.293]


Для сравниваемых сопел расчет всего поля течения велся в рамках полных уравнений Рейнольдса, дополненных дифференциальной моделью турбулентности [5]. Применявшиеся разностные сетки, сгущались вблизи стенок, излома и в зоне, примыкающей к точке торможения, позволяя достаточно аккуратно разрешать особенности потока, вязкого вблизи стенок и практически невязкого в ядре . Во всех рассчитанных примерах отрыв за точкой излома отсутствовал. Для контуров с участками роста давления, построенных в рамках исходной постановки, такой результат, на первый взгляд, представляется неожиданным. Его, однако, можно объяснить, если учесть, что используемые в приближении пограничного слоя комбинации параметров, определяющие возникновение или отсутствие отрыва ( критерии отрыва ) [6], пропорциональны его толщине вытеснения в турбулентном случае (или ее квадрату — в ламинарном). Из-за разгона потока при подходе к излому вдоль вертикальной стенки толщина пограничного  [c.332]

Изменение его толщины индуцирует во внешнем сверхзвуковой потоке градиент давления, вызывающий отрыв. Течение описывается уравнениями обычного пограничного слоя несжимаемой жидкости, но в этих уравнениях градиент давления не задан заранее, а должен определяться в процессе решения из условий совместности с внешним сверхзвуковым потоком. Это условие и известная формула Аккерета линейной теории сверхзвуковых течений позволяют выразить градиент давления через вторую производную от толщины вытеснения вязкой области течения. Таким образом, в уравнениях пограничного слоя появляется старшая (вторая) производная по продольной переменной от неизвестной функции — толщины вытеснения. Это делает необходимым задание еще одного дополнительного краевого условия, кроме начальных и граничных условий на поверхности тела и на внешней границе пограничного слоя. Поскольку появляется не частная, а полная производная по продольной переменной, то достаточно задать не функцию, а лишь одну константу, в данном случае — положение точки отрыва.  [c.243]

На фиг. 8 показаны примеры таких сверхзвуковых течений. Первый пример (фиг. 8, а) — обтекание кормовой части пластины конечной длины. В области ж > О условие прилипания и х, 0) = О заменяется условием симметрии Ыу х, 0) = 0. Следуя [18], оценим амплитуды возмуш,ений и размеры областей, на которые оно распространяется. Исчезновение напряжения трения на оси течения приводит к разгону струек тока, проходящих вблизи плоскости симметрии. Это вызывает быстрое изменение толщины вытеснения и индуцирует градиент давления. Простые оценки на основе уравнений неразрывности, импульса и линейной теории сверхзвуковых течений показывают, что вблизи конца пластины образуется локальная область течения со свободным взаимодействием, для которой перепад давления (отнесенный к р ыУ Др Не , Ах Ке" /8. Перед концом пластины индуцируется отрицательный градиент давления, а в следе давление восстанавливается. При (Да /Ке /в) оо градиент давления исчезает. Аналогичное рассмотрение справедливо и для течения при малых углах атаки а Ве (фиг. 8, в) [251. В этом случае перед концом пластины на ее верхней и нижней сторонах поток поворачивает на угол а. Поворот на угол + при достаточной величине а должен приводить к отрыву пограничного слоя. Критический перепад давления, вызывающий отрыв, несколько больше, чем в случае обтекания угла, образованного двумя стенками. Это объясняется наложением отрицательного градиента давления, вызываемого сходом потока с пластины, как при а = 0.  [c.247]


Рассматривается течение около точки отрыва ламинарного пограничного слоя в сверхзвуковом потоке на плоской пластине. Как известно, отрыв пограничного слоя наступает на гладкой поверхности тела с малой кривизной только при наличии положительного (неблагоприятного) градиента давления. На плоской пластине, обтекаемой безграничным равномерным сверхзвуковым потоком, направленным в невозмущенной области вдоль ее поверхности, градиент давления впереди препятствия или места падения ударной волны (рис. 1.1) может быть вызван только за счет изменения толщины вытеснения пограничного слоя. Поскольку этот индуцируемый градиент давления оказывает влияние на пограничный слой уже в первом приближении, то получается задача о взаимодействии такого же вида, как рассмотренная выше в 1.1.  [c.28]

Таким образом, толщина вытеснения остается постоянной при х —> -а трение на стенке в рассматриваемой области не обращается в нуль ни для каких конечных х. Последнее свойство означает, что нестационарный отрыв потока происходит на других масштабах продольной координаты. Постоянство 5 указывает, что верхняя граница вязкого подслоя в пределе х по-прежнему соответствует = t (ri ). В си-  [c.53]

Геллер [7.58] усовершенствовал этот метод путем введения области отрыва потока. Пренебрегая эффектами толщины вытеснения, он провел итерационные расчеты пограничного слоя и потенциального течения с целью зафиксировать точку отрыва потока на спинке и корытце профиля. Затем было сделано предположение, что вдоль оторвавшихся линий тока статическое давление постоянно и определяется соответствующим распределением источников за местом отрыва потока. В целом получилось очень хорошее соответствие расчетных и измеренных распределений давления, углов поворота потока и коэффициентов сопротивления даже в том случае, когда отрыв потока происходил с передней части профиля.  [c.294]


Смотреть страницы где упоминается термин Отрыв потока толщина вытеснения : [c.287]    [c.15]    [c.253]    [c.552]    [c.208]   
Отрывные течения Том 3 (1970) -- [ c.62 ]



ПОИСК



Вытеснение

Отрыв

Отрыв потока

Толщина вытеснения



© 2025 Mash-xxl.info Реклама на сайте