Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Эйнштейн энергия

Второе качественное значение энергии складывалось медленно и окончательно не сформировалось до сего времени. Оно-то и должно быть классифицировано и лечь в основу этой работы. Дело в том, что, как пишет А. Эйнштейн, энергия зависит и от параметров, характеризующих термические, электрические, химические и т. п. свойства систем... [61]. А современные физики,. .. хотя и считают сведение всех видов энергии к одному единственному значительным прогрессом, но не надеются достичь этой цели в ближайшем будущем (там же). И Эйнштейн приводит пример, показывающий, что вопрос о классификации видов энергии не является терминологическим , поскольку принятое предположение приведет к дальнейшим выводам и изысканиям, к которым другое предположение не привело бы .  [c.30]


Одним из наиболее замечательных современных представлений, выведенных теорией относительности, является инертность энергии. Согласно Эйнштейну энергия обладает массой, а всякая масса представляет собой энергию. Масса и энергия всегда связаны друг с другом общим выражением  [c.645]

По известной релятивистской формуле Эйнштейна, энергия фотона может быть записана как / со = тс откуда находим, что импульс фотона  [c.253]

Первый закон термодинамики представляет собой частный случай всеобщего закона сохранения и превращения энергии применительно к тепловым явлениям. В соответствии с уравнением Эйнштейна Е = тс надо рассматривать единый закон сохранения и превращения массы и энергии. Однако в технической термодинамике мы имеем дело со столь малыми скоростями объекта, что дефект массы равен нулю, и поэтому закон сохранения энергии можно рассматривать независимо.  [c.14]

Автор, широко образованный педагог, прекрасно сознавая огромное значение статистической термодинамики для решения технических задач, показал формы и методы использования основных результатов статистики Больцмана и квантовых статистик Бозе — Эйнштейна и Ферми — Дирака при рассмотрении важнейших понятий термодинамики, как например внутренней энергии, теплоемкости, энтропии и т. д.  [c.7]

Хотя масса и энергия не являются независимыми величинами, изменение массы вследствие изменения энергии незначительно за исключением реакций, протекающих с чрезвычайно большим энергетическим эффектом. Например, изменение массы, соответствующее изменению энергии, равной 1 ООО ООО брит. тепл. ед. (2,5-10 кал), может быть вычислено по уравнению Эйнштейна  [c.30]

На основании соотношения Эйнштейна для энергии фотона может быть получено уравнение для выражения зависимости длины волны от массы фотона  [c.74]

Линия спектра поглощения, наблюдаемая экспериментально, сочетается с некоторым количеством энергии, эквивалентным разности между соседними энергетическими уровнями. Длина волны, соответствующая каждой линии, выражается уравнением Эйнштейна  [c.89]

В настоящее время имеется большое количество пособий и специальных таблиц, в которых эти величины с высокой степенью точности даются для широкого интервала температур. Все новейшие данные по теплоемкостям, энтальпии и внутренней энергии рассчитаны с использованием уточненных спектроскопических констант методом квантовой статистики. Приведенная выше формула Эйнштейна для подсчета теплоемкости может рассматриваться как первый шаг в создании современной квантовой теории теплоемкости.  [c.79]


Энергия за вычетом этих слагаемых называется внутренней энергией (U). Она сосредоточена в массе вещества и в электромагнитном излучении, т. е. это сумма энергии излучения, кинетической энергии движения составляющих вещество микрочастиц, потенциальной энергии из взаимодействия и энергии, эквивалентной массе покоя всех этих частиц согласно уравнению Эйнштейна. При термодинамическом анализе ограничиваются каким-либо определенным уровнем энергии и определенными частицами, не затрагивая более глубоко лежащих уровней. Для химических процессов, например, несущественна энергия взаимодействия нуклонов в ядрах атомов химических элементов, поскольку она остается неизменной при химических реакциях. В роли компонентов системы в этом случае могут, как правило, выступать атомы химических элементов. Но при ядерных реакциях компонентами уже должны быть элементарные частицы. Внутренняя энергия таких неизменных в пределах рассматриваемого явления структурных единиц вещества принимается за условный уровень отсчета энергии и входит как константа в термодинамические соотношения.  [c.41]

Как было указано, Эйнштейн, развивая идею Планка, сделал второй шаг на пути развития квантовой теории, выдвинув новую гипотезу, согласно которой само электромагнитное излучение состоит из отдельных корпускул (квантов) — фотонов с энергией о = и импульсом р hv/ . Гипотеза Эйнштейна в дальнейшем была подтверждена многочисленными экспериментальными фактами и легла в основу объяснения ряда оптических явлений, с которыми не могла справиться волновая теория света.  [c.338]

Как уже было отмечено, Эйнштейн (1905 г.), развивая квантовую теорию Планка, выдвинул идею, согласно которой не только излучение и поглощение, но и распространение света происходит порциями (квантами), энергия и импульс которых  [c.343]

Ато.мы, находящиеся в основном состоянии Ei, поглощая внешнее излучение с энергией hv = — i, переходят из основного в возбужденное состояние. Вероятность такого процесса будет пропорциональной коэффициенту Эйнштейна В -  [c.380]

Атомы, находящиеся в возбужденном состоянии Е , подвергаясь действию внешнего излучения с энергией hv = Еп — Е , вынужденным образом переходят в основное состояние, излучая при этом квант с энергией hv = Е — Ei. Вероятность этого процесса будет пропорциональной коэффициенту Эйнштейна В.ц.  [c.380]

С другой стороны, Эйнштейн вывел уравнение, где связал массу вещества m и энергию Е, которой обладает эта масса  [c.251]

Решение первой задачи привело к установлению Ньютоном и Эйнштейном так называемых динамических законов, решение же второй задачи — к обнаружению законов сохранения таких фундаментальных величин, как энергия, импульс и момент импульса.  [c.9]

Отсюда Эйнштейн пришел к следующему фундаментальному выводу общая энергия тела (или системы тел), из каких бы видов энергии она ни состояла (кинетической, электрической, химической и т. д.), связана с массой этого тела соотношением  [c.218]

На основании открытия взаимосвязи массы и энерг ии тела А. Эйнштейн высказал предположение о том, что любое тело, имеющее массу покоя т , обладает энергией Еа в соответствии с уравнением  [c.288]

Гипотеза Эйнштейна о существовании собственной энергии тела подтверждается многочисленными экспериментами. На основе использования закона взаимосвязи массы и энергии ведутся расчеты выхода энергии в различных ядерных энергетических установках.  [c.288]

Фотоны. Объяснение основных законов фотоэффекта было дано Альбертом Эйнштейном (1879—1955) в 1905 г. Гипотезу Планка об излучении света в виде отдельных порций — квантов с энергией, пропорциональной частоте света, А. Эйнштейн дополнил предположением о дискретности, локализации этих квантов в пространстве.  [c.301]

Красная граница фотоэффекта в фотонной теории определяется из уравнения Эйнштейна условием равенства энергии фотона работе выхода электрона А  [c.302]

В последующие несколько лет исчезли всякие сомнения в значении идей о квантовании энергии и справедливости формулы Планка, которая была использована в самых различных областях физики. Более того, наличие этой формулы стимулировало введение новых понятий, значение которых проявилось лишь в последующие десятилетия. Для иллюстрации этого приведем основы вывода формулы Планка, который был предложен Эйнштейном в 1916 г. В этом выводе было впервые введено понятие вынужденного излучения, играющее основную роль в механизме генерации мазеров и лазеров.  [c.426]


Развивая квантовые представления, Эйнштейн выдвинул гипотезу, что носителем кванта энергии света является своеобразная частица — фотон. Следовательно, энергия не только излучается и поглощается квантами, но и между этими процессами проявляется в виде частицы, которая возникает при излучении света и погибает при его поглогцении. Между этими превращениями фотон движется со скоростью, равной скорости света в вакууме и<1> = с).  [c.444]

Многофотонные процессы играют в этих опытах большую роль, что, возможно, предвидел еще Эйнштейн при формулировке закона фотоэффекта в 1905 г., указав, что передача одному электрону всей энергии одного кванта является простейшим случаем обмена энергии между этими частицами.  [c.450]

Имеется известный закон Эйнштейна, который гласит, что масса М всегда связана с энергией Е следующим уравнением  [c.275]

Взаимосвязь между превращениями массы и энергии (и количественное соотношение между их приращениями) рассматривалась Эйнштейном как самый значительный вывод теории относительности. Пока частицы не приобретают скоростей, соизмеримых с значением с, можно пользоваться нерелятивистским выражением кинетической энергии, из которого следует, что при любом соударении между частицами (даже при неравенстве чи-  [c.384]

Это та самая масса, которая получилась бы по формуле Эйнштейна. Масса светового кванта не является массой покоя, а представляет собой массу, эквивалентную энергии Е. Масса покоя кванта равна нулю.  [c.393]

Рассмотрим (как это делается в статье Эйнштейна по электродинамике) пакет, или группу, плоских световых волн. Предположим, что пакет обладает энергией е и движется в положительном направлении х в системе отсчета S. По измерениям, произведенным в системе S, движущейся со скоростью Vx относительно S, волновой пакет имеет энергию  [c.396]

Еще в тот период, когда указанный закон был экспериментально установлен в качественной форме, Эйнштейн (1905 г.) обосновал теоретически количественную связь между энергией, получаемой электроном при его освобождении светом, и частотой этого света. Согласно теории Эйнштейна закон фотоэффекта имеет следующий вид  [c.638]

Понятно также, что более короткие волны должны быть химически более активными. Так как поглощение одного фотона должно по закону Эйнштейна вести к превращению одной молекулы, то активными могут быть лишь те волны, для которых Ну больше энергии активации О, необходимой для первичного процесса (например, диссоциации поглотившей свет молекулы). Так как вероятность поглощения одной молекулой одновременно двух или большего числа квантов крайне мала, то условие, определяющее предельную частоту активного света, записывается в виде  [c.668]

Кроме спонтанного испускания и поглощения, Эйнштейн ввел представление еще об одном радиационном процессе, — индуцированном (или вынужденном, или стимулированном) испускании. Индуцированное испускание, в отличие от спонтанного, состоит в испускании фотона под действием внешнего электромагнитного поля атом, находящийся в энергетически более высоком состоянии ( т). переходит в состояние с меньшей энергией ( ), и излучается фотон с частотой Ытп = Вт — Еп)/Н. Энергия, излучаемая в результате вынужденных переходов, и их число в единице объема за единицу времени записываются аналогично (211.5) и (211.6)  [c.734]

По величине средней энергии излучения атома (6) легко найти вероятность перехода По Эйнштейну, энергию излучения (6) следует сопоставлять со средней энергией излучения, отнесенной к одному возбужденному атому (см. 71), т. е. с величиной (при пренебрежении индуциро-  [c.420]

Это соотношение, которое носит имя Эйнштейна, замечательно тем, что устанавливает связь между двумя совершенно различными по виду явлениями. Коэффициент диффузии характеризует случайное блуждание частиц, которое приводит, в частности, к флуктуациям плотности. Подвижность же характеризует их регулярное движение под действием внешней силы. На первый взгляд это обычное механическое движение. Но оно сопровождается трением. В результате энергия этого упорядоченного движения, как говорят, Ъиссипирует, т.е. превращается в энергию хаотического движения частиц.  [c.209]

В принципе абсолютным уровнем отсчета энергии могла бы служить масса покоя системы, связанная с ее энергией соотношением Эйнштейна. Однако практически на этом пути возникают непреодолимые трудности, пото-  [c.41]

Соотношения, связывающие волновые характеристики (частота v и длина волны X) с корпускулярными (энергия и импульс р), установленные Эйнштейном (1905 г.), были обобщены Луи де Бройлем (1924 г.) на частицы с отличной от нуля массой покоя . Тем самым была предложена гипотеза, согласно которой свойство дуализма присуще не только свету, но материи вообще. Экспериментальное обнаружение явления дифракции электронов (Дэвиссон и Джермер в 1927 г., Тартаковский и Томсон в 1928 г.) послужило подтверждением гипотезы де Бройля.  [c.338]

Многочисленные попытки найти в1.1ход из этого тупика не приводили к успеху вплоть до начала XX в., когда М.Планк сформулировал гипотезу дискретных квантов энергии, последовательное развитие которой многими физиками (в первую очередь А.Эйнштейном и Н.Бором) в дальнейшем привело к определению границ применимости классической теории и созданию новой квантовой физики, громадное значение которой для развития всех естественных наук общеизвестно.  [c.423]

Как показал Эйнштейн, эти противоречия снимаются, если явления рассматривать с позиций квантовой теории. В этом случае нужно записать закон сохранения энергии для элементарного процесса, заключающегося во взаимодействии одного кванта света с веществом, сводящегося к передаче электрону дискретного количества энергии. При этом нужно учесть, что электрон в металле не является свободным и, чтобы покинуть тело металла, электрон должен преодолеть работу выхода А. При учете этих физически ясных условий легко записат . уравнение, описывающее процесс поглоп1ения одного кванта и возникновения. электрона С наибольшей скоростью  [c.433]

Первая работа Эйнштейна по специальной теории относительности была напечатана в Annalen der Physik, 1905, v. 17, p. 891—921, под заглавием Об электродинамике движущихся тел . Указанный том этого журнала содержит три классические статьи Эйнштейна. Одна из них посвящена квантовой интерпретации фотоэлектрического эффекта (с. 132—148) в другой излагается теория броуновского движения (с. 549—560), третья — по теории относительности — цитирована выше. (Следует отметить, что многие из результатов этой статьи были предвосхищены Лармором, Лоренцем и другими.) В том же году в т. 18 того же журнала (с. 639—641) появилась еще одна короткая статья Эйнштейна под заглавием Зависит ли инерция тела от его энергии . Ниже дается сокращенное излох(ение рассуждений Эйьштейна по этому вопросу.  [c.396]


Энергия eV освобояу дасмых фотоэлектронов oi-ласпо уравнению Эйнштейна равна eV hv — Йд. V -= hv — eV == Ь — и т. д. Отсюда можно ][епосрсдственно определить энергию S/., , если известна энергия hv 7-фотона и измерена энергия фотоэлектронов, или, наоборот, можно определить частоту v тех фотонов, которые вызывают фотоэффект, если известны > и энергия V.  [c.32]

Так как энергия, выделяемая или гюглощаемая в ядерных реакциях, в миллионы раз превосходит энергию химических реакций, то удается экспериментально измерить изменение масс частиц и ядер, вступающих в реакцию. Экспериментальные данные по этому вопросу дают возможность для проверки справедливости релятивистского соотношения Эйнштейна S = tri d.  [c.266]

По мысли Эйнштейна вся энергия, полученная электроном, доставляется ему юветом в виде определенной порции hv, величина которой зависит от частоты света световой квант), и усваивается им целиком. Таким образом, электрон не заимствует энергию от атомов вещества катода, благодаря чему природа вещества не играет никакой роли в определении ё.  [c.638]


Смотреть страницы где упоминается термин Эйнштейн энергия : [c.175]    [c.221]    [c.82]    [c.321]    [c.343]    [c.435]    [c.639]    [c.701]   
Единицы физических величин (1977) -- [ c.38 , c.157 , c.224 , c.254 , c.259 , c.267 ]



ПОИСК



Эйнштейн

Эйнштейний



© 2025 Mash-xxl.info Реклама на сайте