Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Интерферометр Фабри— Перо область

Область свободной дисперсии интерферометра Фабри—Перо.  [c.116]

Рис. 28. К определению области дисперсии интерферометра Фабри — Перо Рис. 28. К определению <a href="/info/237763">области дисперсии интерферометра</a> Фабри — Перо

Интерферометр Фабри —Перо, состоящий из двух идентичных зеркал, разделенных воздушным промежутком длиной L, освещается монохроматическим непрерывным светом с перестраиваемой частотой. Из измерения зависимости интенсивности выходного пучка от частоты падающей волны было найдено, что область дисперсии интерферометра равна 3-10 Гц, а его разрешение составляет 60 МГц. Вычислите расстояние между зеркалами L интерферометра, его резкость и коэффициент отражения зеркал. Вычислите также добротность Q резонатора Фабри —Перо на длине волны 0,6 мк.м (оранжевый цвет) и время жизни фотона в резонаторе.  [c.233]

В настоящее время интерферометр Фабри —Перо (ИФП) широко используется при решении как фундаментальных, так и прикладных задач в областях спектроскопии, квантовой электроники, астрофизики, газодинамики, космических и термоядерных исследований, метрологии и спектрального анализа. Он позволяет получать ценную информацию при изучении атомов и молекул, плазмы, газообразных, жидких и твердых тел. Приборы и установки с ИФП, в том числе лазерные, выпускаются отечественной промышленностью и фирмами ведущих зарубежных государств. Появление новых и развитие старых областей применения, создание лазеров поставило спектроскопистов перед необходимостью развития теории, методов и практики использования реального ИФП.  [c.3]

Изобретенный в 1897 г. многолучевой интерферометр Фабри-Перо в настоящее время является одним из самых распространенных спектральных приборов. Трудно найти область физического эксперимента, в которой не использовались бы те или иные методы и Приборы многолучевой интерференционной техники.  [c.5]

Заслуживает внимания предложение использовать интерферометр Фабри—Перо в качестве фильтра. Располагая диафрагму в центральной зоне интерферограммы Фабри—Перо, можно уменьшить полосу пропускания такого фильтра до доли области дисперсии, определяющейся размером диафрагмы. Предельные возможности фильтра Фабри—Перо ограничены качеством пластин интерферометра и внутренними потерями интенсивности света, которые растут при увеличении разрешающей силы. Потери интенсивности можно уменьшить, используя сферический резонатор Фабри—Перо [29]. При помощи интерферометра Фабри — Перо со сферическими отражателями уже достигнута длина когерентности в 10 ж [30, 31], и возможно, что она будет доведена до 300 м [32].  [c.328]

Таким образом, характеристики приборов, основанных на применении дифракционных решеток, в настоящее время близки к тем характеристикам, которые необходимы для спектроскопии высокой разрешающей силы. Но интерферометр Фабри—Перо все еще остается непревзойденным по своей разрешающей силе и светосиле во многих областях спектра. Поскольку у него мала область дисперсии ( 1 А), его иногда приходится применять в схемах со скрещенной дисперсией.  [c.329]


Дисперсионная область интерферометра Фабри—Перо определяется как  [c.333]

В лазерной спектроскопии представляют интерес три основных типа приборов, измеряющих длины волн призменный спектрограф, предназначенный для фоторегистрации дифракционный монохроматор с регулируемыми входной и выходной щелями, снабженный набором фотоприемников и решеток для перекрытия спектрального диапазона от ультрафиолетовой до дальней инфракрасной области, и, наконец, интерферометр Фабри—Перо, в котором чаще всего применяется пьезоэлектрическое сканирование с набором зеркал и приемников для ближней ультрафиолетовой и дальней инфракрасной области спектра. Ниже мы рассмотрим основные особенности таких приборов.  [c.334]

Методика измерения длины волны при помощи интерферометра Фабри — Перо отличается от других тем, что здесь прямо сравниваются две длины волны неизвестная и стандартная. Поэтому достаточно лишь одной стандартной длины волны. Она может быть расположена произвольно относительно неизвестной длины волны, хотя, разумеется, должна быть в пределах диапазона чувствительности фотопленки или в области чувствительности фотоприемника, которым пользуются при сравнении этих длин волн. Сначала калибруют эталон. Оптическую длину эталона пЬ измеряют в длинах волн стандартной линии тХо = = 2nL os 0. После этого по эталону известной длины измеряют неизвестную длину волны.  [c.355]

Для интерферометра Фабри—Перо гп. поэтому дисперсионная область  [c.177]

Почему дисперсионная область интерферометра Фабри — Перо невелика Что происходит с разрешающей способностью интерферометра Фабри — Перо при увеличении дисперсионной области  [c.178]

В видимой области спектра пластина Люммера—Герке используется значительно реже, чем интерферометр Фабри—Перо. Это связано с тем, что для достижения достаточно большого разрешения, например порядка тысячных долей ангстрема, ее нужно сделать длиной порядка метров. Изготовить такую пластину из стекла с необходимой степенью точности практически невозможно. Кроме того, стекло существенно меняет показатель преломления и размеры в зависимости от температуры, поэтому при работе необходимо, чтобы пластинка находилась в условиях постоянной температуры, что значительно усложняет экспериментальную установку.  [c.208]

Конкурентоспособными с интерферометром Фабри—Перо оказываются пластины, сделанные из кристаллического кварца, благодаря их прозрачности в далекой ультрафиолетовой области. Кварцевая пластина вырезается так, чтобы главная оптическая ось кварца была ориентирована параллельно короткой ее грани. Перед пластиной устанавливается поляризатор для получения поляризованного света с ориентацией плоскости поляризации, совпадающей с плоскостью поляризации необыкновенного луча в кварцево пластине.  [c.208]

Область дисперсии в интерферометре Фабри — Перо 198  [c.814]

Сравнивая (6.57) с (6.55) видим, что резкость Р играет роль эффективного числа пучков в интерферометре Фабри — Перо такое число пучков равной интенсивности обеспечивает ту же разрешающую способность, что и бесконечная последовательность пучков убывающей интенсивности. При / = 0,9 эффективное число пучков 30. Порядок интерференции т для центра системы колец равен т = 2к/к. При толщине Л 1 см для 31=500 нм /п 4-10 и теоретическая разрешающая сила превышает 1 млн. Увеличивая толщину Л, можно добиться еще больших значений К/дК, но это приведет к пропорциональному уменьшению свободной области дисперсии Ак = к/т = к /(2к), что целесообразно лишь при исследовании очень узких спектральных линий.  [c.326]

Ф. А. Королевым и В. И. Гридневым был предложен оригинальный вариант интерферометра Фабри—Перо с отражателями, представляющими собой дифракционные решетки. Такие интерферометры применяются для длинноволновой инфракрасной области спектра и для миллиметрового диапазона длин волн. Дело в том, что в этих областях спектра практически отсутствуют подходящие материалы для изготовления полупрозрачных покрытий. В качестве таких отражателей можно использовать дифракционные зеркала . Они представляют собой тонкие металлические пленки серебра (толщиной 20—30 нм), нанесенные испарением в вакууме на кварцевые или другие подложки. В этих металлических слоях с помощью резца наносятся прозрачные штрихи. Прозрачные штрихи обеспечивают необходимое пропускание, а отражение от непрозрачных частей решетки оказывается вполне достаточным для обеспечения нужных характеристик интерферометра.  [c.131]


Предполагая, что в резонаторах Фабри — Перо основные моды адекватно представляются плоскими волнами, распространяющимися между зеркалами в прямом и обратном направлениях (расстояние между зеркалами равно ё), для частот этих мод можно написать простое соотношение = 1/0(1 + я), где о = с/2с — частотный интервал между двумя соседними модами. Заметим, что в случае когда в качестве резонатора используется интерферометр Фабри — Перо, частоту V можно измерить с точностью до величины, кратной Поэтому о называют областью свободной дисперсии.  [c.486]

Интервал длин волн АХ, определяемый формулой АХ = Х 21, называется областью свободной дисперсии интерферометра Фабри— Перо. При I = 0,5 см, X = 5-10 см допустимая тиирина АХ = = 0,25 А. При дальнейшем увеличении I область свобод[юй дисперсии становится еще меньше. Именно поэтому интерферометр Фабри— Перо чаще всего используется для исследования контура спектральных линий.  [c.116]

Интерферометр Фабри — Перо применяется при исследовании тонкой структуры спектральных линий, выделенных более грубыми спектральными приборами. Широко применяемые в последнее время так называемые 1[нтерференционные фильтры, способные пропускать свет в определенной области длин волн, устроены по принципу действия интерферометра Фабри — Перо с очень малым расстоянием I между пластинками.  [c.116]

Оценка А/, при выбранных выше значениях (I = 0,5 см X = 5 10" см) приводит к допустимой ширине структуры, примерно равной 0,25А. При больишх значениях I область свободной дисперсии А/, становится еще меньше. Это значит, что интерферометр Фабри—Перо следует использовать лишь для иссл дования контуров спектральных линий, выделенных каким-либо более грубым спектральным прибором.  [c.247]

В заключение остановимся на принципе действия интерференционных фильтров, получишпих за последние годы широкое распространение. Интерференционный фильтр — это устройство, позволяющее пропустить значительную часть светового потока в определенной узкой области длин волн. Ширина полосы пропускания Л/, обычно составляет несколько десятков ангстрем. Принцип действия подобного фильтра понятен, если представить себе интерферометр Фабри —Перо с очень ма- сьсм расстоянием I между пластинами.  [c.253]

Сферический интерферометр [9, 46, U2 . Зависимость разности хода параллельного интерферометра Фабри-Перо от угла падения лучей приводит к существенному уменьшению светосилы при Повышении разрешающей силы, при этом чем меньшую часть линии Можно выделить с помощью диафрагмы, тем выше разрешающая способность прибора. Поэтому интерферометр с плоскими зеркалами должен обладать достаточно болыпои областью дисперсии для возможности геометрического диафрагмирования и боль-  [c.75]

Для сферического интерферометра Фабри-Перо справедливы основные характеристики плоского параллельного интерферометра (относительная ширина полосы, область дисперсии, контрастность и т. д.). Интерфенционная к тина в С( рическом интерферометре возникает в результате аберрационных искажений, вызванных отступлением реальных поверхностей о идеальных 11421.  [c.76]

Для исследования спектра мод лазеров в диапазоне длин волн от 2000 А до 0,4 мм могут применяться спектрографы и интерферометры Фабри — Перо. Обычно только методы оптического гомодинного или гетеродинного приема способны обеспечить разрешение, требуемое для наблюдения угловых мод в резонаторах с плоскопараллельной конфигурацией и зееманов-ских компонент в газовых лазерах. Большинство приемников в инфракрасной области (особенно в далекой инфракрасной) обладает очень плохой высокочастотной характеристикой. Поэтому длинноволновая граница применимости данных методов равна примерно 40 ж/с, т. е. границе для приемников из Ge Au, Zn. Постоянная времени таких приемников меньше 10" сек, и, следовательно, в инфракрасной области методом гетеродинирова-ния можно разрешить частоты до 100 Мгц. Но детальные измерения в инфракрасном диапазоне пока что проведены только для нескольких систем, а о работах, выполненных с длинами волн, большими 2,6 жк, почти не сообщалось.  [c.89]

Сначала детально рассмотрим принципы действия, основные характеристики и области применения спектральных приборов с одномерной дпсперспей — призменных и дифракционных, а затем (в гл. 6) — приборов с двумерной дисперсией — интерферометров Фабри — Перо, обращая особое внимапие па выбор параметров спектрального прибора и условий измереппя. позволяющих получить с тем или иным прибором максимальную информацию об исследуемом спектре.  [c.19]

Дисперсиош1ая область. Для дифракционной решетки она определяется так же, как в-случае интерферометра Фабри Перо (см. 28), и находится ш формуле (28.34). У дифракционной решетки обычно наблюдаются спектры низких порядков (т = , 2, 3,. ..), поэтому дисперсионная область оказывается очень большей (ДХ =Х, АХ = X/Z АХ = Х/3). В частносп в первом порядке дисперсионная область решетки совпадает со всем видимым спектром.  [c.226]

Высокая разрешающая способность достигается как в интерферометрах Фабри—Перо и Майкельсона (порядка 10 ), так и в дифракционных решетках (порядка 10 ) й в других интерферометрах. Однако такая высокая разрешающая способность в них достигается за счет различных факторор. В интерферометре Фабри—Перо и Майкельсона она достигается за счет высоких порядков интерференции (порядка 10 ) при сравнительно небольшом числе интерферирующих лучей (несколько десятков в интерферометре Фабри—Перо и два луча в интерферометре Майкельсона), а в дифракционной решетке — за счет большого числа интерферирующих лучей (порядка 10 ) при малом порядке интерференции (несколько единиц). Благодаря этому дисперсионная область очень мала у интерферометра Фабри —Перо (порядка 10" нм) и интерферометра Майкельсона (порядка 10 нм) и очень велика у дифракционной решетки (порядка 10 нм). Поэтому если исследуемое излучение имеет большую дисперсионную область, а его необходимо исследовать с помощью приборов высокого разрешения с малой дисперсионной областью, то приходится комбинировать Между qoбoй различные спектральные аппараты. При этом пб лучаются одновременно и широкая дисперсионная область и большое разрешение.  [c.231]


Из изложенного вьппе следует, что для повышения разрешаю-ш,ей способности многолучевого интерферометра необходимо увеличивать его размеры и в случае интерферометра Фабри — Перо расстояние между его зеркальными поверхностями. Однако при этом СИЛЬНО уменьшается область дисперсии, что при исследовании СЛОЖНЫХ спектров очень затрудняет работу. Поэтому при решении ряда задач по исследованию сверхтонкой структуры спектральных линий применяют сложные интерферометры тина мультиплексов, которые представляют собой два последовательно установленных интерферометра Фабри — Перо ).  [c.203]

Для малых углов падения os0 l и SK= / 2h). Спектральный интервал, занимаемый исследуемым излучением, не должен превышать этой величины, чтобы максимумы соседних порядков от отдельных монохроматических компонент излучения не перекрывались. По этой причине интервал АЯ. называют свободной областью дисперсии или постоянной интерферометра. В 6.6 показано, что с увеличением расстояния h между пластинами возрастает разрешающая сила прибора, характеризующая способность разделять две близкие по длине волны монохроматические спектральные линии. Однако из (5.81) видно, что увеличение h сопровождается уменьшением области дисперсии SK = l / 2h). При типичных значениях (ft = 5 мм Я. = 0,5 мкм) ДЯ. составляет менее 0,03 нм. Это значит, что при работе с интерферометром Фабри—Перо требуется (за очень редким исключением) дополнительный более грубый спектральный прибор для выделения в излучении источника спектрального интервала, не превосходящего дисперсионной области интерферометра. В простейшем случае может быть применен фильтр, но чаще интерферометр скрещивают с призменным или дифракционным (см. 6.6) спектральным прибором. Можно, например, спроецировать интерференционные кольца на плоскость щели спектрографа так, чтобы центр картины совпал с серединой щели. Когда исследуемый спектр состоит из отдельных линий, изображения щели в свете этих линий, получающиеся в соответствующих местах фокальной плоскости спектрографа, оказываются пересеченными поперечными дугами, представляющими участки колец (рис. 5.31). Таким образом можно изучать структуру спектральных линий, состоящих из нескольких близко расположенных компонент, так как каждая из компонент образует свою систему интерференционных колец. Измеряя на спектрограмме, какую долю от расстояния ДЯ. между дугами колец соседних порядков составляет расстояние между дугами расщепившихся колец, можно определить спектральные интервалы между компонентами линии, структура которой не разрешается спектрографом. Измерения обычно производят на втором или третьем от центра кольце, где дисперсия еще достаточно велика, но изменяется не столь быстро, как в центре интерференционной картины.  [c.263]

Интерферометр Фабри — Перо проще в обращении и обеспечивает более высокую разрешающую силу, чем приборы с большими дифракционными решетками. Основной его недостаток — малая величина свободной области дисперсии. Система из двух последовательных интерферометров, толщины которых находятся в простом кратном отношении (мультиплекс), имеет область дисперсии, ха-  [c.326]

Сложный интерферометр Фабри—Перо — мультиплекс . Одиночный интерферометр Фабри—Перо не может обеспечить большую область дисперсии и одновременно высокую разрешающую способность. Это утверждение вытекает из соотношения (3.7.23). Чем меньше величина бЯ, и следовательно, больше разрешающая способность прибора, тем меньше область дисперсии Л.Х.  [c.465]

В последних двух главах рассматривается концентрация поля в некоторых ограниченных областях пространства, в которых имеют место определенные комбинации длин волн и неоднородностей среды это приводит к эффекту, который можно назвать своего рода удержанием излучения. В частности, в гл. 7 мы рассмотрим пассивные и активные резонаторы, используемые в лазерных устройствах и предназначенные для удержания излучения вблизи оси оптических резонаторов и интерферометров Фабри — Перо. При этом мы будем проводить изучение главным образом на основе теории дифракции. В гл. 8 для исследования удержания излучения в поперечном направлении вблизи оси диэлектрического световода задача решается аналитически с использованием модовых решений волнового уравнения. Это позволяет рассмотреть единым образом самые современные вопросы, связанные с такими нелинейными оптическими явлениями, как фазовая самомодуляция и солитоны.  [c.9]

Шавлов и Таунс предложили распространить принцип действия мазера на оптическую область, используя оптические переходы между электронными уровнями атомов. При попытках реализовать принцип действия лазера возникают новые по сравнению с мазером фундаментальные проблемы. Это связано в первую очередь с тем, что длина волны света мала по сравнению с любыми приемлемыми размерами резонатора. Таким образом, в общем случае интервал между частотами различных мод становится очень малым, а потому в частотную полосу атомного перехода попадает большое число мод (рис. 1.4). Следовательно, приходится осуществлять выделение нужной моды. Одна из возможностей такого выделения заключается в том, что убирают боковые стенки резонатора и используют просто два зеркала, расположенных параллельно друг другу на его концах. При этом образуется интерферометр Фабри— Перо, что было предложено Шавловом, Таунсом, Прохоровым и Дике. Селекция мод осуществляется двояко (рис. 1.5 и 1.6). Прежде чем начнется процесс генерации лазерного излучения, возбужденные атомы спонтанно испускают свет во всех возможных направлениях. Благодаря указанному расположению зеркал в резонаторе будут существовать достаточно долго (для э екта вынужденного испускания) только те световые волны, которые распространяются в направлении, близком к оси лазера. Другие же моды не будут усиливаться. Такой механизм особенно эффективен, поскольку за счет вынужденного испускания усиливаются волны, которые имеют одни и те же направление, длину волны и поляризацию. Таким образом, интерферометр Фабри—Перо осуществляет сильную дискриминацию мод по их временам жизни в резонаторе. Далее, при указанном расположении зеркал может поддерживаться возбуждение только тех аксиальных мод, для которых выполняется условие  [c.26]

Из теории интерферометра Фабри — Перо следует, что чем больше расстояние между пластинами, тем выше разрешающая способность и тем меньше спектральная величина области дисперсии прибора. Необходимость иметь прибор с достаточно большими значениями разрешающей способности и спектральной величины области дисперсии привела к созданию сложного 1И1терферометра.  [c.457]


Смотреть страницы где упоминается термин Интерферометр Фабри— Перо область : [c.116]    [c.247]    [c.248]    [c.564]    [c.426]    [c.491]    [c.613]    [c.259]    [c.236]    [c.344]    [c.345]    [c.178]    [c.200]    [c.309]    [c.520]   
Введение в экспериментальную спектроскопию (1979) -- [ c.438 , c.439 ]



ПОИСК



Интерферометр

Интерферометр Фабри — Перо

Интерферометр Фабри—Перо. Распределение интенсивности в интерференционной картине. Интерференционные кольца. Разрешающая способность. Факторы, ограничивающие разрешающую способность Дисперсионная область. Сканирующий интерферометр Фабри—Перо Интерференционные фильтры. Пластинка Люммера—Герке. Эшелон Майкельсона Интерференция в тонких пленках

Интерферометрия

Перила

Перова

Рен (перо)

Фабри и Перо

Фабри — Перо интерферометр область дисперсии (свободная



© 2025 Mash-xxl.info Реклама на сайте