Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Остаточное сопротивление тепловое электрическое

Установив предварительно значения твердости и условной прочности, рассматривают другие важные свойства резин, определяющие эксплуатационные характеристики готового изделия. К таким свойствам относятся относительное удлинение, сопротивление многократному растяжению, накопление остаточной деформации при сжатии гистерезисные свойства, например полезная упругость и теплообразование сопротивление тепловому старению электрические свойства сопротивление воздействию растворителей и т. д.  [c.14]


Обратная величина представляет собой примесное удельное электрическое сопротивление. Его называют также остаточным сопротивлением, так как такое сопротивление остается в металле прн понижении температуры, когда исчезает тепловое сопротивление.  [c.87]

В первом приближении можно считать, что электросопротивление чистого металла есть сумма двух составляющих. Первая ( идеальное электросопротивление) зависит только от температуры и связана с рассеянием электронов проводимости на тепловых колебаниях атомов в решетке. Вторая составляющая ( остаточное электросопротивление) не зависит от температуры и связана с дефектами решетки. При низких температурах, когда вторая составляющая становится доминирующей, электрическое сопротивление должно быть очень чувствительным к химическим дефектам (примесям) или физическим дефектам (дефектам решетки). Для образца, содержащего мало дефектов решетки, измерение низкотемпературного электросопротивления является удобным методом определения степени чистоты. Каждая из примесей вносит вклад в величину электросопротивления пропорционально своей концентрации.  [c.443]

При исследовании диэлектрических свойств слоистых пластмасс, изготовленных на основе асбестовой бумаги, содержащей в своем составе некоторое количество целлюлозы, было замечено их резкое ухудшение в вакууме. Например, после 1000 ч нагревания в вакууме при остаточном давлении 10- —10 Па и 600°С удельное объемное сопротивление снизилось до ЫО Ом-м при измерениях при 15—35°С и до 1-10 Ом-м при 600°С для АГН-7 до ЫО Ом-м при 15—35°С и 1-10 Ом-м при 600°С для АГН-40. Электрическая прочность при этом также ухудшилась, у АГН-7 она снизилась до 1,8, у АГН-40 —до 1,4 МВ/м. Анализ образцов АГН-7 показал, что после 1000 ч старения в вакууме при 600°С образец материала содержит примерно 50% исходного количества углерода 2,45 и 4,4 мг соответственно. Для удаления углерода материал в исходном состоянии был подвергнут дополнительной термообработке в воздушной среде при 650 С. При этом предполагали, что в присутствии кислорода углерод окислится и удалится в виде СО и СОг. После такого теплового воздействия химический анализ материала АГН-7 показал наличие в образце лишь 0,1 мг углерода, а диэлектрические свойства в вакууме улучшились. В табл. 7.3 приведены сравнительные данные свойств АГН-7 и АГН-40 в вакууме до и после термообработки. Коэффициенты вариации при этом составили 13—15% при 15—35°С и 11 —13% при 600°С. Как видно из данных табл. 7.3, после термообработки диэлектрические свойства материалов в вакууме  [c.180]


Остаточное сопротивление. Все статические дефекты, как химические загрязнения, так и структурные нерегулярности, расеивают электроны, причем это рассеяние может быть описано временем релаксации (см. п. 13). Время релаксации мало меняется с энергией электронов, приводя к остаточному электрическому сопротивлению р , не зависящему от температуры, и остаточному тепловому сопротивлению  [c.274]

Величина Wg не является характеристикой вещества она зависит (и часто очень сильно) от загрязнений и способа приготовления образца. Изучение влияния загрязнений и обработки на остаточное сопротивление с помощью измерения электрического сопротивления обычно более удобно, чем с помощью измерения теплового сопротивления. Только в исключительных случаях следует прибегать к измерениям теплового сопротивления (возможно, в опытах по деформации стернсней или когда желательно изучить решеточную компоненту теплопроводности). Фактически измерения теплопроводности для этих целей пока пе проводплись.  [c.274]

Незначительное увеличение W Т при уменьшении температуры было найдено Уайтом у золота [88], серебра [89] и меди [90], причем только у таких образцов, которые имели высокие значения остаточного сопротивления Рд. По-видимому, остаточное сопротивление этих образцов ведет себя аномально. Электрическое сонротивлепие было измерено только в случае меди, и оно действительно характеризовалось аномальным поведением. Кемп, Сридхар и Уайт [96] также наблюдали минимум WT у магния, и опять-таки в соответствующих случаях следовало ожидать минимума р. Розенберг [97] измерил как электрическое, так п тепловое сопротивления одного и того же образца магния и нашел минимум и у того и у другого. Подобные измерения на магнии были выполнены также Вебберод п Спором [98].  [c.275]

Поскольку расчетное значение электронной теплопроводности оказывается меньше измеренного, то сразу не очевидно, какие из этих расчетов верны. Отличие можно приписать как раз решеточной теплопроводности. Во многих практических случаях такое суммирование двух главных компонент электронного теплового сопротивления будет обеспечивать достаточную точность. Однако в экспериментах на разбавленных олово-кадмиевых сплавах (с содержанием кадмия меньше 1%) Карамаргин и др. [ИЗ] обнаружили весьма сложное поведение решеточной теплопроводности, определяемой по разности между полной измеренной теплопроводностью и рассчитанной электронной компонентой. Решеточная теплопроводность сначала росла с температурой от самой низкой температуры эксперимента (4,2 К), но затем она начинала быстро падать при какой-то определенной температуре для каждого образца. Таким образом, величина решеточной теплопроводности имела сильно различающиеся значения как раз там, где можно было ожидать, что она слабо зависит от концентрации примесей и определяется главным образом фонон-фонон-ными взаимодействиями. Те же авторы ранее [112] обнаружили в этом сплаве отклонения электрического сопротивления от правила Маттисена. Они определили для каждого образца при заданной температуре величину Арг, на которую измеренное электрическое сопротивление отличалось от суммы идеального сопротивления, находимого по измерениям на чистом олове, и остаточного сопротивления. Аналогичные отклонения от правила аддитивности, по предположению авторов, должны были происходить и для теплового сопротивления добавочное тепловое сопротивление находилось по формуле  [c.230]

Первый член представляет тепловое сопротивление, обусловленное рассеянием электронов на колебаниях решетки коэффициент а пропорционален 0 . Второй член обусловлен рассеянием на примесях есть остаточное электрическое соиротивлеине металла и L,—число Лоренца, равное 2,44.10 вт ом/град .  [c.663]

Калориметр выполнен с двойными стенками, между которыми циркулирует охлаждающая вода. Значительный расход воды обеспечивает постоянство температуры внутренней поверхности калориметра, которая является тепловоспринимающей. Внутренний диаметр калориметра значительно больше диаметра проволоки. Поверхность проволоки не только излучает энергию, но и участвует в процессах конвективной теплоотдачи и теплопроводности. Однако после вакуумирования при остаточном давлении воздуха внутри калориметра порядка 10 мм рт. ст. передача теплоты путем конвекции и теплопроводности становится пренебрежимо малой, и проволока передает теплоту станкам калориметра только излучением. Тепловой поток определяется по падению напряжения на измерительном участке и силе тока в нем. Падение напряжения измеряется цифровым вольтметром Ф219 через делитель напряжения. Силу электрического тока, проходящего через проволоку, определяют с помощью образцового сопротивления (У н = 0,05 Ом), включенного в схему. Сила тока изменяется в пределах 1—3 А. Падение напряжения на образцовом сопротивлении измеряется с помощью того же цифрового вольтметра. На измерительном участке температура проволоки практически постоянна по длине. Эта температура определяется П0 зависимости электрического сопротивления проволоки от температуры. Такой измерительный преобразователь температуры носит название термометра сопротивления (см. п. 3.1.2). Зависимость электрического сопротивления исследуемого тела от температуры определяется предварительными опытами.  [c.189]


НАПОР [<гидростатический определяется отношением полной потенциальной скоростной характеризуется отношением кинетической) энергии некоторого объема жидкости к массе жидкости в этом объеме температурный — разность температур двух различных смежных или разделенных стенкой сред, между которыми происходит теплообмен] НАПРЯЖЕНИЕ механическое [служит мерой внутренних сил, возникающих в деформированном теле и определяемой отношением выявленной силы к величине элементарной площадки, выбранной внутри или на поверхности тела в гидроаэростатике определяется как сила, отнесенная к единице площади поверхности, на которую она действует касательное возникает под действием сил, касательных к нормальное возникает под действием сил, нормальных к> поверхности тела трение численно равно силе внутреннего трения в газе, действующей на единицу площади поверхности слоя] электрическое (численно равно суммарной работе, совершаемой кулоновскими и сторонними силами при перемещении по участку цепи единичного положительного заряда анодное прилагается между анодом и катодом электронной лампы или гальванической ванны зажигания обеспечивает переход несамостоятельного газового разряда в самостоятельный переменное, действующее значение которого вычисляют (для периодического напряжения) как среднеквадратичное значение напряжения за период его изменения пробивное вызывает разряд через слой диэлектрика сеточное приложено между сеткой и катодом электронной лампы и служит для запирания лампы при определенном значении его на участке цепи равно произведению его сопротивления на силу тока) НАПРЯЖЕНИЯ механические (контактные возникают на площадках соприкосновения деформируемых тел температурные образуются в теле вследствие различия температур составных его частей и ограничения возможностей теплового расширения со стороны окружающих частей тела или других тел остаточные вызываются крупными дефектами материала, неоднородностью кристаллической структуры и дефектами атомно-кристаллических решеток)  [c.253]


Смотреть страницы где упоминается термин Остаточное сопротивление тепловое электрическое : [c.288]    [c.275]    [c.290]   
Физика низких температур (1956) -- [ c.161 , c.163 , c.170 , c.274 , c.275 , c.584 ]



ПОИСК



В остаточное

Остаточное сопротивление тепловое

Сопротивление электрическое

Тепловое сопротивление



© 2025 Mash-xxl.info Реклама на сайте