Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения разностные в анализе напряжений

Изложены основы теории упругости после ознакомления с основополагающими понятиями приводятся анализ напряженного и деформированного состояния, вывод основных уравнений, плоская и температурная задачи, элементы теории пластин и оболочек. Особое внимание уделено численным методам решения прикладных задач теории упругости помимо достаточно распространенных вариационных и разностных методов подробно освещается сравнительно новый структурный метод, хорошо зарекомендовавший себя при исследовав НИИ объектов сложной формы. Для понимания затронутых вопросов достаточно знаний обычного курса математики технического вуза.  [c.40]


Особенностью расчета кольцевых элементов является то обстоятельство, что большинство задач по определению напряженного состояния этих элементов сводится к решению ряда не зависящих одна от другой систем обычных дифференциальных уравнений первого порядка при одной независимой переменной. Поэтому основное внимание уделяется традиционным методам расчета, основанным на аналитическом или численном решении дифференциальных уравнений. Эти методы дают существенную экономию машинного времени ЭВМ и позволяют избежать трудоемкой работы по подготовке исходной информации, а также облегчают анализ и расшифровку результатов расчета. Кроме того, аналитические решения позволяют наглядно представить взаимную зависимость различных параметров, определяющих напряженно-деформированное состояние конструкции, и тем самым облегчают работу конструктора по выбору оптимальной схемы. В некоторых задачах традиционные методы либо не применимы, либо не эффективны. Как правило, это имеет место в тех случаях, когда в конструкции сопрягаются по линии или площади кольцевые элементы и элементы другой конфигурации. В таких задачах могут быть использованы различные модификации разностных и вариационно-разностных методов. Наиболее широко в настоящее время применяется метод конечных  [c.3]

К числу эффективных методов анализа напряженно-деформированных состояний в элементах реакторов относятся численные методы - метод конечных элементов (МКЭ) и вариационно-разностный метод (ВРМ), метод граничных интегральных уравнений ( ГИУ), получившие значительное развитие в последнее десятилетие благодаря их повьпиенной универсальности и появлению ЭВМ с большими быстродействием и памятью. Конечноразностный метод получил применение при определении термоупругих напряжений в зонах патрубков реакторов водо-водяного типа [10, 12].  [c.35]

При расчетах напряжений и деформаций в конструк1щях ВВЭР широкое применение находят методы теории оболочек и пластин, аналитические методы решения краевых задач в зонах концентрации напряжений, а также численные методы решения с применением ЭВМ (методы конечных элементов, конечных разностей, вариационно-разностные и граничных интегральных уравнений). Эффективность применения численных методов резко увеличивается, когда решаются задачи анализа термомеханической на-груженности сложных по конструкции узлов ВВЭР (плакированные корпуса и патрубки, элементы разъема, контактные задачи с переменными граничными условиями, элементы главного циркуляционного контура при сейсмических воздействиях).  [c.8]


Вариацнонно-разностый метод расчета элементов конструкций ВВЭР. Разностные уравнения выводятся как физические уравнения для конечного элемента сетки [6, 7]. Решение задачи в перемещениях существенно облегчает выполнение граничных условий, поставленных как для перемещений, так и для напряжений, оно естественно при анализе многосвязных областей, так как дает возможность обойти вопросы единственности и однозначности.  [c.55]

Метод конечных элементов является аналитической процедурой интенсивная разработка которой велась в течение сравнительн( короткого промежутка времени. Ключевая идея метода при анализ( поведения конструкций заключается в следующем сплошная средг (конструкция в целом) моделируется путем разбиения ее на об ласти (конечные элементы), в каждой из которых поведение средь описывается с помощью отдельного набора выбранных функций представляющих напряжения и перемещения в указанной области Эти наборы функций часто задаются в такой форме, чтобы удовле творить условиям непрерывности описываемых ими характеристи во всей среде. В других случаях выбранные представления полер не обеспечивают непрерывности и, тем не менее, дают возможное получить удовлетворительное решение. При этом в отличие от полностью непрерывных моделей, нет полной уверенности в схо димости решения. Если поведение конструкции описывается един ственным дифференциальным уравнением, то получить приближенное решение этого уравнения можно как методом конечных элементов, так и с помощью техники разложения в ряды или конечно разностных схем. Если же конструкция в целом неоднородна и со стоит из большого количества отдельных конструктивных элемен тов, поведение каждого из которых описывается своим дифференциальным уравнением, то в этом случае, как правило, можно не посредственно применить лишь метод конечных элементов.  [c.16]


Смотреть страницы где упоминается термин Уравнения разностные в анализе напряжений : [c.202]    [c.304]    [c.383]   
История науки о сопротивлении материалов (1957) -- [ c.477 ]



ПОИСК



Анализ уравнений

Напряжения Уравнения

Напряжения — Анализ

Тон разностный



© 2025 Mash-xxl.info Реклама на сайте