Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнение дифференциальное вращательного движения физического маятника

Силами сопротивления движению маятника пренебрегаем. В каждый момент времени положение маятника определяется углом поворота ф, образованным вертикальной прямой Оу и прямой ОС, соединяющей центр инерции маятника С и точку О пересечения оси маятника с перпендикулярной к ней плоскостью, проведенной через центр инерции (рис. 9). Чтобы составить дифференциальное уравнение движения физического маятника, достаточно использовать уравнение вращательного движения (1.82Ь). Вычисляя момент силы тяжести относительно оси Ог, проходящей через точку О, и подставляя его в дифференциальное уравнение движения (I. 82Ь), найдем  [c.72]


Решение. В данной задаче диск является физическим маятником. Если вес маятника обозначим Р, а расстояние ОС обозначим а, то (Я) = —аР sin ф а поэтому дифференциальное уравнение вращательного движения маятника имеет вид  [c.344]

Дифференциальное уравнение вращательного движения (21.156) запишется для физического маятника в виде  [c.380]

Пятая работа посвящена освоению одного из экспериментальных методов определения моментов инерции материальных тел сложной формы, имеющих плоскость симметрии, положение центра масс которых неизвестно. В процессе выполнения работы студент использует следующие вопросы программы дифференциальное уравнение вращательного движения, теория физического маятника и теорема о вычислении моментов инерции относительно параллельных осей. В качестве объекта исследования применяется натуральный шатун двигателя внутреннего сгорания.  [c.79]

Заметим, что уравнения движения для поступательного (второй закон Ньютона) и вращательного (уравнение моментов) движений имеют одинаковую структуру с той лишь разницей, что. в уравнении моментов вместо линейного стоит угловое ускорение, вместо суммарной силы - суммарный момент сил, а вместо массы тела - его момент инерции относительно оси вращения. (Такое формальное и смысловое соответстзие величин и формул, описывающих поступательное и вращательное движение тела, можно проследить и далее - см. таблицу на с. 70.) Поэтому для тела, вращающегося относительно оси, можно ставить и решать такие же задачи, что и для движения материальной точки или поступательного движения тела. Например, прямая задача в случае вращательного движения, т.е. нахождение кинематического закона вращения (p t), состоит в решении дифференциального уравнения (19.11) при заданных начальных условиях <р(й)=ро и u,(0)= u . (Рекомендуем забежать вперед и сопоставить решения задач о свободных колебаниях пружинного и физического маятников в 36).  [c.65]


Курс теоретической механики. Т.2 (1977) -- [ c.73 ]



ПОИСК



Движение вращательное

Движение вращательное вращательное

Движение дифференциальное

Движение маятника вращательное

Движение физического маятника

Дифференциальное уравнение движения

Дифференциальное уравнение, движени

Маятник

Маятник физический

Маятника уравнение

Уравнение вращательного движения

Уравнение вращательной для вращательного движения

Уравнение движения маятника

Уравнение движения физического маятника

Уравнение дифференциальное вращательного

Уравнение дифференциальное вращательного движения

Уравнение физического



© 2025 Mash-xxl.info Реклама на сайте