Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Метод символический (интегрирования)

Уравнение (IV.62) можно интегрировать двумя способами методом вариации постоянных интегрирования (методом Лагранжа) и символическим методом. Мы применим второй метод ).  [c.352]

При рассмотрении указанных выше простейших объектов к символическому методу примыкает метод однородных решений. По этому методу решение задачи теории упругости иш ется в форме бесконечной суммы частных решений, удовлетворяюш их однородным краевым условиям на боковых поверхностях (параллельных срединной поверхности), но, вообще говоря, не краевым условиям на контурных поверхностях к этому агрегату решений прибавляется частное решение уравнений теории упругости, удовлетворяющее неоднородные краевые условия на боковых поверхностях. Основные моменты решения задачи заключаются (1) в определении корней трансцендентного характеристического уравнения однородных решений и (2) в установлении процедуры, определяющей произволы интегрирования однородных решений через заданные краевые условия на контурных поверхностях обычно для этой цели пользуются принципом возможных перемещений.  [c.262]


Символическое, или операционное, исчисление как самостоятельный математический метод было впервые создано профессором Киевского университета М. Ващенко-Захарченко. В своей монографии Символическое исчисление и его приложение к интегрированию линейных дифференциальных уравнений , вышедшей в 1862 г., автор дает систематическое изложение операционного исчисления и выводит основные соотношения и их применения к решению дифференциальных уравнений с постоянными и переменными коэффициентами.  [c.471]

Основные изменения, произведенные в первых двух главах, связаны с более строгим применением бесконечных рядов и интегралов, входящих в решения задач. Главы III—VI мало отличаются от соответствующих глав первого издания. Следующие четыре главы содержат много нового материала. Главы XI и XII совершенно новые. Первая озаглавлена Применение контурных интегралов к решению уравнения теплопроводности". Недавняя работа Бромвича привлекла внимание к символическому методу" Хевисайда. Действительно, все вопросы, разобранные ь этой главе, можно было бы решить с помощью этого метода. Но, чтобы оправдать символический метод, мы должны основываться на контурном интегрировании, и главная разница между методом, развитым и применяемым мною в этой главе, и симво-. , лическим методом заключается в том, что я предпочитаю в каждом случав прибегать к стандартному пути интегрирования на плоскости комплексного переменного, вместо того чтобы пользоваться с1воего рода мдтематической стенографией.  [c.4]

Следуют,ий шаг в решении задачи о вынужденных колебаниях состоит в применении контурного интегрирования мы получим таким методом выражение для реакции струны на импульсную силу, приложенную в момент = 0 в точке х — , вготорую символически можно записать в виде выражения о( ) (2С — ). Интеграл для этого случая можог быть получен из выражения (6,16)  [c.131]

Возможности программного обеспечения эта интерактивная, структурированная моделирующая программа может быть использована для решения системы дифференциальных (в том числе нелинейных), разностных и алгебраических уравнений, возникающих в задачах идентификации и проектирования. В программе предусмотрены различные блоки 55 типов, включая интегратор с насыщением, блок временной задержки и другие. Пользователь может назначать блокам символические имена. В программе используются пять методов интегрирования четыре метода с фиксированным шагом (метод Эйлера, метод Адамса—Башфорта-2, метод Рунге—Кутты-2 и метод Рунге—Кутты-4) и один с изменяющимся (метод Рунге—Кутты-4). Линейная и квадратичная интерполяция (от 11 до 201 точек) проводится на основе генераторов функций трех типов. Алгоритмические петли могут быть решены интерактивным методом, что позволяет решать нелинейные алгебраические уравнения. Все переменные, получаемые в процессе моделирования, сохраняются в памяти. В дальнейшем они могут быть использованы для обработки, сохранены на диске или использованы как начальные условия для следующего прогона. Кроме того, предусмотрены средства многократного прогона. Программа содержит процедуру оптимизации, причем пользователь может задавать критерий оптимизации и до девяти произвольных оптимизируемых параметров. Каждый параметр может быть ограничен сверху и снизу. Для улучшения скорости процедуры оптимизации для каждого параметра может быть выбран соответствующий масштаб. Несколько моделей могут быть объединены в одну новую модель. Рассчитанные переходные характеристики и параметры могут быть использованы в последующих прогонах. Пользователь может легко определить блок нового типа, для чего необходимо выполнить операцию компоновки. Программа не предназначена для решения дифференциальных уравнений с частными производными, полиномиальных и матричных уравнений.  [c.320]



Курс теоретической механики. Т.1 (1972) -- [ c.352 ]



ПОИСК



Интегрирование

Методы интегрирования



© 2025 Mash-xxl.info Реклама на сайте