Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Факторы склонность конструкции к разрушению

Для предупреждения хрупкого разрушения конструкционные материалы должны обладать достаточной пластичностью S, ф) и ударной вязкостью (КСи). Однако эти параметры надежности, определенные на небольших лабораторных образцах без учета условий эксплуатации конкретной детали, достаточно показательны лишь для мягких малопрочных материалов. Между тем стремление к уменьшению металлоемкости конструкций ведет к более широкому применению высокопрочных и, как правило, менее пластичных материалов с повышенной склонностью к хрупкому разрушению. Необходимо также учитывать то, что в условиях эксплуатации действуют факторы, дополнительно снижающие их пластичность, вязкость и увеличивающие опасность хрупкого разрушения. Это концентраторы напряжений (надрезы), понижение температуры, динамические нагрузки, увеличение размеров деталей (масштабный фактор).  [c.225]


Этот фактор затрудняет анализ условий остановки разрушения. Разрушение, распространяющееся при данной энергии деформации, может в одной конструкции останавливаться, в другой нет. Таким образом, материал, используемый в конструкции, которая имеет склонность быстро рассеивать энергию деформации  [c.184]

Ниже проведена оценка влияния наиболее значащих факторов испытаний на развитие в металле трещин. Особое внимание уделено особенностям коррозионных поражений сварных соединений. Как известно, склонность (К) металлических конструкций к разрушениям в активных рабочих средах определяется тремя основными условиями (82) свойствами металла (М) напряженным состоянием (Н) воздействием среды (с), т.е. М + Н + С = К. Тогда возможны различные виды разрушения конструкции от механического разрущения, когда роль среды незначительна, до видов разрушений, когда незначительна роль напряжений, например, при сплошной коррозии. В настоящем разделе рассматривается лишь один из трех факторов — фактор среды (С), значимость которого, в свою очередь, зависит от состава, концентрации, температуры, давления и условий контакта испытательной среды.  [c.71]

Следовательно, на равных правах с критической температурой хрупкости существуют критическая скорость нагружения, критическое соотношение между компонентами тензора напряжепий и т. д. Поэтому при расчете элементов конструкций на хрупкую прочность, кроме температуры, необходимо учитывать многие другие конструктивно-технологические и эксплуатационные факторы, неблагоприятное сочетание которых может явиться причиной внезапного хрупкого разрушения, В этом отношении важно располагать объективной числовой характеристикой, оценивающей склонность материала к хрупкому разрушению с учетом указанных факторов, подобно тому, как имеется число Рейнольдса, выражающее условие течения жидкости и режим этого течения, или критерий краевого подобия Био, в котором отражены размер тела, условия на поверхности и свойства материала.  [c.382]

Известно [20, 134], что ограничение твердости металла сварного шва является одним из практических методов снижения склонности конкретного материала к СР. Как следует из публикаций [11, 39, 81, 125], на образование трещин в сварном соединении влияют неоднородность структуры металла, наличие в структуре зон, склонных к растрескиванию, и уровень действующих и остаточных напряжений. Именно в сварных соединениях локализуется большая часть разрушений вследствие СР сварных конструкций. Анализ влияния различных технологических факторов на процесс СР показал, что наиболее неблагоприятное влияние оказывает быстрое охлаждение шва с образованием перлитно-бейнитной смеси с мартенситом. Стойкость к СР в зоне сварного шва соединения меньше, чем основного металла не только из-за остаточных напряжений, но и вследствие дефектов сварного шва. Для сталей повышенной прочности характерно СР по шву и зоне термического влияния (ЗТВ), для сталей обычной прочности избирательное разрушение по шву и ЗТВ отмечается лишь при переохлаждении. С увеличением твердости сварных швов склонность их к СР возрастает.  [c.63]


Склонность сварных конструкций к разрушению при одновременном воздействии механических нагрузок и активных сред зависит от следующих факторов  [c.471]

Оценка склонности сварных соединений к развитию трещин при термической обработке производится с помощью жестких проб и испытаний образцов, подвергнутых нагреву по имитированному термическому циклу сварки (п. 15). Пробы и испытания, а также опыт изготовления сварных конструкций показали, что образование трещин при термической обработке наиболее вероятно при высокой жесткости соединения и наличии концентраторов напряжений в районе усиления швов, а также несплавле-ний и других дефектов на границе сплавления. При исследовании с помощью жестких проб и релаксационных испытаний установлено, что вероятность появления трещин при отпуске или стабилизации заметно снижается, если перед нагревом проведена зачистка наружной поверхности швов до плавного сопряжения с основным металлом, или если испытываются гладкие образцы. Поэтому фактор концентрации является одним из основных, способствующих появлению рассматриваемого типа трещин. С позиций межзеренного разрушения такое влияние концентрации обусловлено тем, что за счет объемности напряженного состояния подавляются сдвиговые деформации и развиваются процессы, способствующие межзеренному разрушению.  [c.99]

Одним из вариантов такой ситуации является случай, когда разрушение возникает во внутренних объемах материала листа путем микрорастрескивания и образования разрывов, формирующих микротрещины в нескольких плоскостях, параллельных поверхности листа (слоистые трещины СТ). Возникновение слоистых трещин наблюдается [1-6] преимущественно в зоне термического влияния сварного соединения с последующим выходом в основной металл (рис. 4.1). Склонность сварного соединения к слоистому растрескиванию определяется влиянием трех основных факторов свойствами стали в направлении толщины листа, конструкцией сварного узла и технологией сварки. Первый фактор имеет доминирующее значение и его рассмотрению уделено особое внимание, включая исследования причин и механизмов СР, разработку методов испытаний и оценку сопротивления стали разрушению.  [c.90]

На склонность к коррюзишному растрескиванию высокопрочных сталей внешние и внутренние факторы оказывают гораздо большее влияние, чем на другие виды коррозии в особенности это ОТН01СИТСЯ к структуре сплавов и составу внешней среды. Многие факторы, слабо влияющие на общую коррозию, могут привести к разрушению конструкций, изготовленных из высокопрочных сталей.  [c.135]

Лрименение электрохимической защиты для устранения коррозионного фактора возможно приложением тока извне или путем присоединения к конструкции, подверженной коррозионному растрескиванию, другого металла с более отрицательным потенциалом — протектора (принципы применения электрохимической защиты рассматриваются в главе XVII). Эффективное действие этого метода защиты в отношении предотвращения или уменьшения коррозионного растрескивания зависит от природы металлов и сплавов, характера агрессивной среды, применяемой плотности тока и других факторов. На фиг. 88 показано влияние катодной поляризации на склонность к коррозионному растрескиванию магниевого сплава МАЗ в растворе Na I 4- ЬКоСГоО-. Как видно из хода кривой, с увеличением плотности тока время до разрушения возрастает, достигая максимума при плотности тока  [c.107]


Смотреть страницы где упоминается термин Факторы склонность конструкции к разрушению : [c.74]    [c.216]    [c.599]    [c.50]   
Машиностроение Энциклопедия Т IV-3 (1998) -- [ c.74 ]



ПОИСК



Конструкция Разрушение



© 2025 Mash-xxl.info Реклама на сайте