Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Колебания свободные (собственные) 322, 323 - Нормальные координаты

Так же как для систем с двумя степенями свободы, в рассматриваемых системах можно ввести нормальные координаты. Число нормальных координат равно числу степеней свободы системы. Движение каждой нормальной координаты происходит независимо от остальных. Поэтому каждая нормальная координата совершает гармоническое колебание с собственной, или нормальной, частотой. Любые свободные и вынужденные колебания можно представить в виде суперпозиции нормальных колебаний.  [c.281]


Координаты 1, I2, In называются главными или нормальными координатами колебательной системы колебание, при котором изменяется лишь одна главная координата, а остальные все время равны нулю, называется главным колебанием. Мы говорим, что в главном колебании соответствующая главная координата возбуждена, а остальные координаты находятся в покое. Как видно из формулы (9.1.14), в г-ж главном колебании координата изменяется по гармоническому закону с периодом 2п рг- Всего имеется п таких периодов, не обязательно различных их называют собственными периодами или периодами свободных колебаний системы. Периоды свободных колебаний являются инвариантами системы и не зависят от лагранжевых координат, выбранных первоначально для описания системы. Главное колебание с наибольшим периодом и, стало быть, с наименьшей частотой, т. е. колебание с наименьшим р, называется основным колебанием. Поскольку q зависят от I линейно, любое колебание может быть представлено как суперпозиция главных колебаний.  [c.142]

Таким образом, собственные частоты и коэффициенты распределения амплитуд и являются теми характеристиками, которые необходимо определить экспериментально. Удобно свободные колебания системы представить суммой собственных каждое из которых является гармоническим колебанием нормальной координаты q Последнюю можно определить как координату, совершающую гармонические колебания лишь частоты Амплитуда нормального колебания определяется амплитудой колебаний (той же частоты) в одной из обобщенных координат, напри.мер q . Обычные, физические, координаты выражаются через нормальные в соответствии с (3).  [c.331]

Как видно, применение нормальных координат чрезвычайно упрощает всю теорию свободных колебаний системы. Вместо системы совокупных дифференциальных уравнений, которыми определялись координаты дц д2,. . ., дк, мы имеем здесь к независимых друг от друга уравнений (8). Вместе с тем мы освобождаемся от необходимости отыскивать корни уравнения частот собственные частоты системы определяются сразу формулами (9).  [c.460]

При переходных режимах вынужденным колебаниям сопутствуют свободные, соответствующие начальным условиям. При мгновенном приложении нагрузки или при мгновенном изменении какой-либо из координат (например, при мгновенном перемещении одной из опор) в системе происходит удар. При этом, как и в системах с конечным число.м свободных координат, движение начинается в точке приложения мгновенного возмущения и лишь постепенно распространяется на остальные части системы. При этом образуется бегущая волна, как это поясняет рис. 8.25, на котором изображен заделанный одним конном стержень, к свободному концу которого внезапно приложена нагрузка. Здесь показана примерная упругая линия этого стержня в последовательные моменты времени. Скорость распространения волны деформации и ее форма (крутизна) зависят от параметров системы (от соотношения распределенных масс и упругости, иными словами, от соотношения собственных частот нормальных форм и времени приложения внешней нагрузки). Вследствие постепенности распространения деформации при ударных нагрузках в зоне их приложения возникают динамические напряжения, которые могут во много раз превысить статические, т. е. те, которые соответствуют весьма медленному нагружению системы. Поэтому появление ударных нагрузок в машинах крайне нежелательно.  [c.234]


Элементы векторов h, = (A,i,..A ,), определяемые из (3.17) с точностью до произвольного общего множителя, представляют собой амплитуды отклонений обобщенных координат от равновесного состояния системы при свободных колебаниях с частотами кг. Определив собственные формы системы, можно перейти к главным (нормальным) обобщенным координатам Wi,..., г с помощью линейного преобразования  [c.46]

Когда периоды действующих сил очень велики по сравнению с периодами свободных колебаний системы, иногда оказывается пригодной статическая теория, но в подобных случаях решение вообще легче найти без применения нормальных координат, Сюда относится, например, теория приливов Бернулли, которая исходит из предположения, что периоды свободных колебаний масс воды, находящихся на земном шаре, малы по сравнению с периодами действующих сил, благодаря чему инерцию воды можно не принимать во внимание, В действительности же это предположение является очень грубым и приложимо лишь частично. В силу этого нам все еще неизвестны многие важные моменты, касающиеся приливов. Основные силы имеют полусуточный период, который недостаточно велик в сравнении с соот-ветсгвующими собственными периодами, чтобы можно было пренебречь инерцией воды. Но если бы вращение Земли было много медленнее, статическая теория притивов могла бы быть вполне достаточной.  [c.156]


Машиностроение Энциклопедия Т I-3 Кн 2 (1995) -- [ c.323 , c.324 ]



ПОИСК



Колебания нормальные

Колебания свободные

Колебания свободные (собственные свободные

Колебания свободные (собственные собственные

Колебания свободные (собственные собственные (свободные

Колебания собственные

Колебания собственные (свободные)

Координаты нормальные

Собственные колебания — см- Свободные колебания



© 2025 Mash-xxl.info Реклама на сайте