Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тантал Электросопротивление

Удельное электросопротивление в (тантал). ....... 0,0431 0,1066 0,146 0,197 0,2424 0,286 0,33 0.371  [c.502]

Зависимость теплоемкости и теплопроводности карбидов от температуры, а также их коэффициенты термического линейного расширения и удельного электросопротивления приведены в табл. 13—16. Карбиды переходных металлов лучше других тугоплавких соединений ведут себя в условиях эксплуатации при высоких температурах в вакууме. Об этом свидетельствуют более низкие значения скорости испарения и давление диссоциации металла над карбидом (табл. 17) [16], Карбиды, относящиеся к фазам внедрения, при испарении диссоциируют на металлы и углерод (например, карбиды титана, циркония, ниобия, тантала и др.). Испарение карбида хрома, в отличие от перечисленных карбидов, носит ступенчатый характер — при  [c.419]


Сплавы, состоящие из карбидов, подобно сплавам на основе систем металл-металл, имеют более высокие значения свойств, чем индивидуальные карбиды. Например, твердые растворы карбидов гафния и тантала, а также карбиды циркония и тантала имеют максимум температуры плавления ( 4000° С) в системе карбидов гафния с титаном найден максимум микротвердости твердые растворы карбидов гафния с ниобием имеют максимум удельного электросопротивления и т. д. Большинство двойных карбидных систем образует непрерывные ряды твердых растворов.  [c.420]

Прочностные и другие свойства карбидных сплавов изменяются при легировании. Так, например, легирование сплава W —Ti —Со карбидом тантала увеличивает его твердость, электросопротивление и термостойкость [25]. По этим же данным предел прочности при изгибе и ударная вязкость сплава W —Ti —ТаС с повышением содержания кобальта от 6 до 30 об. % увеличивается (при температурах от 20 до 700° С). Увеличение содержания кобальта в указанном сплаве приводит к уменьшению модуля упругости и увеличению термостойкости и термического коэффициента линейного расширения.  [c.424]

На описанной установке были проведены измерения удельного электросопротивления и коэффициента теплопроводности вольфрама и молибдена в интервале температур 900—2200° С, а также тантала при  [c.98]

В качестве примера рассмотрим измерения, проведенные на танталовой проволоке 0 1 мм. Расчет теплопроводности тантала проводился по формуле (18), т. е. для измерений использовались короткий и длинный образцы. В связи с этим в водоохлаждаемые зажимы первоначально была поставлена проволока длиной более 150 мм. В этом случае отводом тепла на концах в сравнении с потерями на радиацию можно было пренебречь, и образец рассматривался как бесконечно длинный . На длинной проволоке был определен температурный ход удельного электросопротивления и построена зависимость температуры проволоки от величины силы тока. Затем расстояние между зажимами уменьшалось до 30 мм и в них была укреплена эта же танталовая проволока, но уже в форме короткого образца. На образец подавался определенной величины ток и проводились измерения распределения температуры вдоль проволоки в средней части образца. Полученные данные наносились на график (рис. 1), и по углу наклона прямой определялась величина коэффициента а. Значение а можно также получить аналитически методом наименьших квадратов. Нами применялась как графическая, так и аналитическая обработка результатов. Таким образом получались все необходимые величины для подсчета коэффициента теплопроводности.  [c.98]


На рис. 4 приведена температурная зависимость удельного электросопротивления тантала во всей исследованной области. Сравнение с литературными данными [8—10] показывает хорошее совпадение резуль-  [c.98]

Рис. 4. Температурная зависимость удельного электросопротивления ом см.) тантала по данным различных авторов Рис. 4. Температурная <a href="/info/59882">зависимость удельного электросопротивления</a> ом см.) тантала по данным различных авторов
Металлический тантал при нагревании интенсивно поглощает газы, являясь хорошим геттером. При этом уменьшаются его пластичность, магнитная восприимчивость, коррозионная стойкость, увеличиваются прочность, твердость, электросопротивление.  [c.552]

Несколько лучше сваривается тантал, который в большей степени сохраняет пластичность после термического воздействия, отличается сравнительно высоким удельным электросопротивлением и требует лишь более или менее надежной защиты от окисления.  [c.166]

При исследовании сплавов ниобий—тантал путем измерения удельного электросопротивления было установлено, что ниобий, тантал и их сплавы не склонны к межкристаллитной коррозии [5].  [c.179]

Метод катодного распыления находит широкое применение в технике. Его используют при нанесении специальных покрытий для оптических и электрооптических приборов. Основные области применения метода катодного распыления наиболее полно представлены в статье [194]. В области электроники для контактов и электродов применяют пленки золота, серебра, платины пленки тантала отличаются высокой стабильностью электросопротивления нитрид тантала и некоторые пленки сплавов используют для конденсаторов. Пленки 5102, полученные методом радиочастотного распыления, имеют лучшую стабильность и адгезию, чем полученные любым другим методом. Новым направлением в применении катодного распыления является нанесение твердых смазок (например, МоЗ-з) и износостойких покрытий из хрома, вольфрама, нержавеющей стали и т. п. Например, освоен метод нанесения хромовых и платино-хромовых покрытий на лезвия бритв из нержавеющей стали для увеличения срока их службы. В полностью автоматизированной установке одновременно покрывается 70 ООО лезвий. Катодное распыление применяют для декоративных целей (получения различных орнаментов, рисунков) и для получения тонкого подслоя (хрома, меди и т. п.) на пластмассе с хорошей адгезией к основе. Особенно перспективен этот метод для нанесения покрытий из тугоплавких материалов, которые трудно нанести термическим испарением в вакууме.  [c.8]

Металлы — молибден, вольфрам и тантал в отличие от сплавов увеличивают электросопротивление в 5 раз при нагреве до 1000° и в 7—12 раз при нагреве до 2000°.  [c.99]

Большинство карбидов переходных металлов относится к фазам внедрения и обладает явно выраженными металлическими свойствами [15], т. е. имеет металлическую проводимость, высокие значения электропроводности и теплопроводности, характерное для металлов падение электросопротивления с понижением температуры и т, д. К указанным фазам относятся карбиды со структурой типа МеС — фаз внедрения углерода в поры кубических решеток металлов (титана, циркония, гафния, ванадия, ниобия и тантала). Такие карбиды, как Мо С, V , Та С, Wj являются также фазами внедрения, но они имеют гексагональные структуры. В карбидах хрома СГ3С2, Сг,Сз, СггзСв атомы углерода образуют обособленные структурные элементы — цепи, существенно затрудняющие деформирование кристаллической  [c.417]

В качестве исходных материалов при изготовлении разрывных контактов используются вольфрам, молибден, тантал, рений, серебро, медь, золото, платина и другие металлы. Однако однокомпонентные (компактные) контакты имеют ряд недостатков и не могут обеспечить многообразие противоречивых требований. Так вольфрам, характеризующийся высокой твердостью и прочностью при высоких температурах, малой склонностью к искрению, отличается высоким электросопротивлением и низкой стойкостью против окисления. Золото, платина и серебро имеют низкое элетросо-противление, но не обеспечивают требуемых механических свойств при высоких температурах.  [c.805]


Выше 1900° С понижается электросопротивление и значительно убывает вес. В интервале 1900— 2300° С интенсивно удаляются углерод и кремний в виде СО и низшего окисла 510, возгоняются низшие окислы тантала (например, ТаОг), испаряются примеси титана, железа, никеля. Одновременно с удалением примесей происходит рост кристаллов и уплотнение (усадка)  [c.192]

Диселенид тантала (а-ТаЗег) имеет металлический тип проводимости, удельное электросопротивление р = =2,23-10 ом-см, свойства его показаны в та бл. 69.  [c.35]

Для уменьшения термических напряжений в процессе соединения полупроводника с металлом или сплавом необходимо максимально приблизить коэффициенты термического расширения и теплопроводности. Из металлов по ТКЛР близки к полупроводникам тугоплавкие металлы (рис. 6, а) вольфрам, молибден, хром, тантал (6,6-10 К ), ниобий (7,2-10 К" ) и др. Эти металлы имеют одинаковую кристаллическую решетку — объемно-центрированную, т. е. не очень упакованную. Температуры плавления у этих металлов различны и колеблются от 2148 К у хрома до 3683 К у вольфрама, т. е, в 1,1—2,7 раза больше, чем температура плавления рассматриваемых полупроводников. У этих металлов большие энергии активации (37н-42) 10 Дж/кг и коэффициенты самодиффузии (2н- 16) X X 10 м /с, что приводит к увеличению затрат энергии на диффузионное соединение полупроводников с металлами. Эти металлы имеют высокие значения механической прочности, удельного электросопротивления они антикоррозионны.  [c.233]


Смотреть страницы где упоминается термин Тантал Электросопротивление : [c.505]    [c.99]    [c.150]    [c.114]    [c.150]    [c.92]   
Справочник машиностроителя Том 2 Изд.3 (1963) -- [ c.433 , c.434 ]



ПОИСК



ТАНТА

Тантал

Электросопротивление



© 2025 Mash-xxl.info Реклама на сайте