Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Касательные напряжения в балках переменного поперечного сечения

Чем меньше берется расстояние Ах, тем более точными будут результаты. Однако при слишком малом Ах точность будет утрачена, так как придется искать разность между весьма близкими по величине членами уравнения (5.25). Уравнение (5.25) носит достаточно общий характер и может быть использовано во многих практических случаях для получения касательных напряжений в балке переменного поперечного сечения.  [c.175]

Касательные напряжения в. балках переменного поперечного сечения  [c.58]


Напряжения в балках переменного сечения. Для приближенной оценки влияния переменности сечений балки на напряжения рассмотрим балку, сечения которой в плоскости хОг изменяются по линейному закону (рис. 134) и симметричны относительно оси Оу. Рассмотрим напряжения в какой-либо точке А поперечного сечения. Если обозначить нормальные напряжения в этой точке (т и касательные т , причем направление принимать по направлению соответствующего волокна АВ, то напряжение в точке А, нормальное к плоскости сечения, равно  [c.220]

При несимметричном сечении балки следует ожидать и несимметричного распределения касательных напряжений в этом сечении. В таком случае перерезывающее усилие, оставаясь равным и параллельным поперечной силе, не будет проходить через центр тяжести поперечного сечения. Таким образом, обе эти силы составят пару сил, действующую в плоскости поперечного сечения балки (рис. 185), и вызовут кручение балки, причем, так как поперечные силы, а следовательно, и перерезывающие усилия, вообще говоря, переменны по длине балки, то величина крутящего момента балки также будет переменной по длине балки. Только в том случае, когда нагрузка, приложенная к балке, действует не в плоскости, проходящей через центры тяжести сечений (через ось) балки, а в плоскости, проходящей через точку Сь кручение будет отсутствовать и, следовательно, балку несимметричного сечения можно рассчитывать так же, как балку симметричного сечения. Точка Си т. е. та точка сечения, через которую должна проходить плоскость действия сил,  [c.292]

Поперечный изгиб. При поперечном изгибе, кроме нормальных напряжений ст , в балке возникают касательные напряжения т . Соотношение между нормальными и касательными напряжениями зависит от отношения высоты балки к ее длине. Для длинных балок величина касательных напряжений мала по сравнению с нормальными. Поэтому в рассматриваемой задаче касательными напряжениями будем пренебрегать, считая балку достаточно длинной. Тогда решение (12.4), полученное для чистого изгиба, будет пригодно и для поперечного изгиба, только изгибающий момент будет теперь переменной величиной, зависящей от координаты 2. Переменной же величиной вдоль оси стержня будет и высота упругой зоны Из формулы (12.4) для балки прямоугольного сечения находим зависимость высоты упругой зоны от изгибающего момента М  [c.275]


Если плоскость действия сил, к которым сводится нагрузка на балку, не проходит через линию, соединяющую центры изгиба сечений, то балка подвергается не только изгибу, но и кручению парами сил, моменты которых, вообще говоря, меняются по ее длине. Вследствие этого в сечениях балки появляются дополнительные касательные напряжения. С другой стороны, как известно, кручение стержней любого сечения, кроме круглого, сопровождается искривлением сечений. Ввиду переменности крутящего момента по длине балки, а также ввиду препятствий искривлению концевых сечений при их заделке, искривления различных сечений оказываются различными. Мы встречаемся с неравномерным или стесненным кручением, называемым так в отличие от равномерного или свободного кручения, при котором крутящие моменты постоянны по длине стержня и поперечные сечения могут свободно искривляться.  [c.293]

Рассмотрим сначала консольную балку. Примем, что на ее конце действуют изгибающий момент M t) и переменная во времени поперечная сила N i). Для общности поперечное сечение балки примем произвольным, но постоянным вдоль ее оси. Предположим, что балка однородна. Возьмем систему декартовых координат (x,y,z), причем ось х направим по оси балки, а оси I/, Z — по осям симметрии поперечного сечения. Будем считать, что изгиб балки происходит относительно оси у. В выбранной таким образом системе координат напряженное состояние изгибаемой балки определяется нормальным напряжением Охх и касательным напряжением Txz, а деформированное состояние— продольной деформацией Ехх и сдвигом Yxz-  [c.222]

В предположении, что простая формула для балок может быть использована с достаточной точностью при вычислении нормальных напряжений от изгиба в балках переменного поперечного сечения, ве- личина касательных напряжений в этих балках может быть вычислена при помощи метода, уже примененного для призматических- балок (см. т. I, стр. 105). Предположим, что прямоугольная балка переменной высоты к и постоянной ширины Ь изгибается грузом Р приложенным на конце (рис. 43). Взяв два смежных поперечных сечения тп и т щ и вырезав элемент ттфа горизонтальной плоскостью аЬ, най дем величину касательных напряжений из уравнения равновесия, этого элемента  [c.59]

Это выражение справедливо для балки с постоянной шириной 6 и переменно"й высотой Л. Высота может изменяться произвольным образом. при условии, что это изменение плавное. Отметим, что касательное -напряжение в поперечном сечении зависит не только от поперечной силы,. но также от изгибающего момшта.М,и скорости изменения высоты к в зависимости от продольной координаты х.  [c.176]

Выясним теперь, какое значение имеет смещение равнодействующей Q относительно центра тяжести сечения. Для наглядности рассмотрим один из простейщих случаев, когда на консоль швеллерного сечения действует вертикальная нагрузка Р (рис. 313, а), причем силовая плоскость совпадает с одной из двух главных плоскостей стержня (плоскостью ху). Эта нагрузка вызывает в сечениях балки переменные по длине изгибающие моменты М х) = Рх и поперечную силу Q x) = P (рис. 313, б). В сечениях появляются касательные напряжения т — в стенке и т — в полках. Поперечная сила Q х) = Р, являющаяся равнодействующей касательных усилий, в любом сечении смещена относительно геометрической оси стержня (оси х) на одно и то же расстояние zo + z .  [c.339]

В последующих же главах во втором томе, в частности в главах XI, XII, XIII, посвященных деформации стержней, аппарат теории сплошных сред (главным образом теория упругости) играет уже чисто служебную роль, как рабочий инструмент, с одной стороны, для оценки гипотез, используемых в элементарной теории, и границ применимости последней, а с другой стороны, для решения тех задач, которые не могут быть решены средствами элементарной теории. К числу последних относятся кручение призматических стержней некруглого поперечного сечения, свободное кручение валов переменного вдоль оси диаметра, определение полного касательного напряжения при поперечном изгибе балки, определение положения центра изгиба в поперечном сечении массивных стержней и др.  [c.13]


Имеетея еще третий тип энергии деформации, который связан с закручиванием ребер, хотя он и не является строго крутильным. Если ребро закручивалось с постоянной скоростью кручения, то выражение (4.75а), которое описывает энергию деформации, соответствующую касательным напряжениям и деформациям, возникающим при кручении, будет достаточно. На практике скорость кручения, как правило, не постоянна, и части ребра, расположенные вне пластины, будут при этом подвергаться также и изгибу в плоскости пластины из-за переменности скврости кручения. Так как такому изгибу подвергаются все части ребра, то обычно бывает достаточно рассмотреть полки ребер, поскольку они, как правило, наиболее удалены от пластины и дают наибольший вклад в жесткость в плоскости пластины. Момент инерции If каждой полки двутавровой балки, используемой в качестве подкрепляющего ребра, можно приближенно взять равным половине момента инерции всего поперечного сечения относительно стенки как оси, который приводится в справочниках по строительной механике.  [c.264]

Метод, основанный на гипотезе о неискривляемости при изгибе балки плоских сечений, нормальных к ее оси. С помощью данного метода находятся номинальные суммарные напряжения изгиба и сжатия, без учета касательных сил и концентрации напряжений в переходной кривой у основания зуба. Для зубьев, представляющих короткие балки с большими размерами поперечного сечения, которое, к тому же, переменно по длине балки,  [c.172]

Напряжения в изогнутой балке (345).—228. Постановка задачи (345).— 229. Касательные напряжения при изгибе балки (346).—230. Формулы для сме щений (349). — 231. Решение задачи об изгибе для различных контуров поперечных сечений (351).— 232. Исследование смещений (354). —233. Распределение касательных напряжений (357),— 284, Обобщение предыдущей тев ин (339). (-т2МС, Аналогия с формой растянутой мембраны под действием переменного давления (361). —  [c.11]


Смотреть страницы где упоминается термин Касательные напряжения в балках переменного поперечного сечения : [c.87]    [c.319]   
Смотреть главы в:

Сопротивление материалов Том 2  -> Касательные напряжения в балках переменного поперечного сечения



ПОИСК



I касательная

Балка переменного

Балка переменного поперечного сечени

Балка переменного поперечного сечения

Балка переменного сечения

Балка поперечного сечения

Балка сечения

Балки Напряжения

Балки переменного сеченая

Вал переменного сечения

Касательное напряжение сечения

Касательные напряжения поперечные

Напряжение касательное

Напряжение сечения

Напряжения Напряжения касательные

Напряжения переменные 380384 —

Напряжения по поперечным сечениям

Напряжения поперечные

Напряжения, касательные в балках

Поперечное касательное напряжение в балке

Поперечное сечение



© 2025 Mash-xxl.info Реклама на сайте