Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Особенности распространения волн в газах, жидкостях и твердых телах

Ввиду малой длины волны У. характер его распространения определяется в первую очередь молекулярной структурой среды, поэтому, измеряя скорость с и коэф. затухания а, можно судить о молекулярных свойствах вещества (см. Молекулярная акустика). Характерная особенность распространения У. в многоатомных газах и во мн. жидкостях—существование областей дисперсии звука, сопровождающейся сильным возрастанием его поглощения. Эти эффекты объясняются процессами релаксации (см. Релаксация акустическая). У. в газах, и в частности в воздухе, распространяется с большим затуханием (см. Поглощение звука). Жидкости и твёрдые тела (особенно монокристаллы) представляют собой, как правило, хорошие проводники У., затухание в них значительно меньше. Поэтому области использования У. средних и высоких частот относятся почти исключительно к жидкостям и твёрдым телам, а в воздухе и газах применяют только У. низких частот.  [c.215]


В явлениях природы, в науке и технике мы очень часто встречаемся с различными колебательными и волновыми движениями. К таким движениям относятся известные всем колебания маятника часов, колебания струны, движение волн на поверхности воды, распространение радиоволн и многие другие. Звук также представляет собой волновое движение. Звуковые волны возникают и распространяются не только в воздухе и других газах, но и в жидкостях и твёрдых телах. Чтобы понять особенности звуковых явлений, происходящих в различных средах, необходимо ясно себе представить, чтб такое колебания, что такое волновое движение. Поэтому прежде всего следует напомнить основные свойства и законы, которыми характеризуются колебательные и волновые движения.  [c.11]

УЗ-вые волны затухают значительно быстрее, чем волны более низкочастотного диапазона, т. к. коэфф. классического поглощения звука (на единицу расстояния) пропорционален квадрату частоты. В низкочастотной области коэфф. релаксационного поглощения также растёт пропорционально квадрату частоты, однако при повышении частоты этот рост замедляется и коэфф. поглощения стремится к постоянной величине. Область, где наблюдается такое изменение хода коэфф. поглощения, наз. релаксационной, а средняя её частота — частотой релаксации. Величина, обратная частоте релаксации,— время релаксации — характеризует процесс перераспределения энергии внутри вещества. Помимо характерного хода коэфф. поглощения УЗ, в релаксационной области наблюдается рост скорости звука с частотой — дисперсия, обусловленная физич. процессами в веществе и отличающаяся от дисперсии скорости звука, характерной для любых частот и связанной с геометрич. условиями распространения волны. Дисперсия УЗ в релаксационных областях обычно не превышает нескольких процентов. В многоатомных газах релаксация связана с обменом энергии между поступательными и внутренними степенями свободы, и характерные частоты лежат в среднем и даже низкочастотном диапазонах. В жидкостях к основным релаксационным процессам относятся, напр., внутримолекулярные превращения, структурная и химич. релаксации соответствующие частоты лежат чаще всего в области частот 10 —10 Гц. В твёрдых телах имеются релаксационные процессы различной природы, обусловленные, напр., взаимодействием ультразвука с электронами проводимости, со спиновой системой (см. Спин-фононное взаимодействие), С колебаниями кристаллической решётки. Влияние этих процессов проявляется в частотной зависимости поглощения УЗ. Резонансные явления типа акустического парамагнитного резонанса (область частот 10 —11 Гц) и акустического ядерного магнитного резонанса (10 —10 Гц) дают соответствующие пики поглощения. Резонансный характер может иметь также и дислокационное поглощение в кристаллах. Все эти особенности поглощения УЗ в твёрдых телах обусловлены взаимодействием УЗ-вых и гиперзвуковых волн с внутренними возбуждениями в твёрдых телах. Возникновение же такого взаимодействия связано с тем, что средние и высокие УЗ-вые частоты становятся сравнимы с характерными частотами процессов в веществе на молекулярном и атомном уровне, а длины волн сравнимы с параметрами внутренней структуры вещества. Последнее обстоятельство объясняет также увеличение рассеяния упругих волн на УЗ-вых частотах, наблюдаемое в микронеоднородных средах, в поликристаллич. телах сечение рассеяния на неоднородностях возрастает, если их размеры становятся порядка длины волны.. Связь характера распространения УЗ и, в частности, его высокочастотной области — гиперзвука — со структурой вещества и элементарными возбуждениями в нём является одной из важнейших особенностей УЗ-вых волн. Она позволяет судить о строении вещества на основании измерений скорости и погло-  [c.11]


В нефтегазовом деле приходится сталкиваться с движением жидкостей и газа по трубам и внутри различных машин и механизмов. В этих условиях немаловажно знать законы взаимодействия жидкости с границами потока (особенно величины сопротивления подвижных и неподвижных твёрдых стенок), неравномерности распределения скоростных потоков, фильтрацию жидкостей и газов через пористую среду, равновесие жидкостей и тел, плавающих на поверхности жидкости, распространение волн и вибраций в твёрдых и жидких телах. Подавляющее число движений жидкостей и газов в каналах и трубопроводах имеет турбулентный характер, поэтому так важно экспериментальное и теоретическое изучение теории турбулентных потоков.  [c.2]

Др. особенность У.—возможность получения большой интенсивности даже при сравнительно небольших амплитудах колебаний, т. к. при данной амплитуде плотность потока энергии пропори, квадрату частоты, УЗ-волны большой интенсивности сопровождаются рядом нелинейных эффектов. Так, для интенсивных плоских УЗ-волн при малом поглощении среды (особенно в жидкостях, твёрдых телах) синусоидальная у излучателя волна превращается по мере её распространения в слабую периодич. ударную волну (пилообразной формы) поглощение таких волн оказывается значительно больше (т. н. нелинейное поглощение), чем волн малой амплитуды. Распространению УЗ-волн в газах и жидкостях сопутствует движение среды, т. н. акустическое течение, скорость к-рого зависит от вязкости среды, интенсивности У. и его частоты вообще говоря, она мала и составляет долго % от скорости У. К числу важных нелинейных явлений, возникающих при распространении интенсивного У. в жидкостях, относится акустич. кавито1(ия. Интенсивность, соответствующая порогу кавитации, зависит от рода жидкости и степени её чистоты, частоты звука, темп-ры и др. факторов в водопроводной воде, содержащей пузырьки воздуха, на частоте 20 кГц она составляет доли Вт/см . На частотах диапазона У. средних частот в УЗ-поле с интенсивностью начиная с неск. Вт/см могут возникнуть фонтанирование жидкости и распыление её с образованием весьма мелкодисперсного тумана. Акустич, кавитация широко применяется в технол. процессах при этом пользуются У. низких частот.  [c.215]

С особенностями распространения ультразвуковых волн в газах и жидкостях мы познакомились в предыдухдих главах и видели, какие разнообразные применения находит ультразвук в различных областях техники и научного эксперимента. Каковы особенности распространения ультразвука в твёрдых телах и какие наиболее важные и интересные применения имеет ультразвук в этой области  [c.384]

Ультразвук (УЗ) — упругие колебания и волны, частота к-рых превышает (1,5—2)-10 Гц (15—20 кГц). Нижняя граница области УЗ-вых частот отделяюш ая её от области слышимого звука, определяется субъективными свойствами человеческого слуха и является условной, поскольку верхняя граница слухового восприятия человека имеет значительный разброс для различных индивидуумов. Верхняя граница УЗ-вых частот обусловлена физич. природой упругих волн, к-рые могут распространяться лишь в материальной среде, т. е. при условии, что длина волны значительно больше длины свободного пробега молекул в газах или межатомных расстояний в жидкостях и твёрдых телах. Поэтому в газах верхнюю границу частот УЗ определяют из условия приблизительного равенства длины звуковой волны и длины свободного пробега молекул при нормальном давлении она составляет 10 Гц в жидкостях и твёрдых телах определяюш им является равенство длины волны межатомным расстояниям, и граничная частота достигает 10 —10 Гц. В зависимости от длины волны и частоты УЗ обладает специфич. особенностями излучения, приёма, распространения и применения, поэтому область УЗ-вых частот удобно подразделить на три подобласти низкие УЗ-вые частоты (1,5 10 —10" Гц), средние (10 —10 Гц) и высокие (10 —10 Гц). Упругие волны с частотами 10 —10 Гц принято называть гиперзвуком.  [c.9]



Смотреть страницы где упоминается термин Особенности распространения волн в газах, жидкостях и твердых телах : [c.781]    [c.476]    [c.14]   
Смотреть главы в:

Методы и приборы ультразвуковых исследований Т.1 Ч.А  -> Особенности распространения волн в газах, жидкостях и твердых телах



ПОИСК



Волны в жидкостях и газах

Волны распространение

Особенности распространения КВ



© 2025 Mash-xxl.info Реклама на сайте