Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Протонный распад

Образовавшееся ядро gLi , захватив протон, распадается на два ядра гелия  [c.335]

Протонный распад из основного состояния возможен для более нейтронно-дефицитных ядер, чем эмиссия ЗП. Из-за эффекта спаривания протонов он оказывается возможным сначала у нечётных ядер. Для регистра-  [c.167]

Распад нейтрона. Используя данные гл. 12, определите энергию, выделяемую при распаде нейтрона на протон и электрон. Ответ. 0,79 МэВ.  [c.395]


Рис. 15.8. а) Свободный нейтрон распадается на протон и электрон (которые можно наблюдать) и на нейтрино, которое практически невозможно наблюдать. О наличии нейтрино мы узнаем по тому признаку, что векторная сумма импульсов протона н электрона в общем случае не равна импульсу исходного нейтрона, б) Число электронов, приходящееся на единичный интервал импульсов Л (р), отложено как функция импульса электрона. Если бы масса нейтрино была больше нуля, то получилась бы кривая, показанная на рис. в) в действительности распределение вида в) никогда не наблюдается.  [c.428]

Известные в наше время атомные ядра можно разделить на две группы 1) стабильные (устойчивые) ядра и 2) нестабильные (радиоактивные). Стабильные ядра — это такие ядра, для которых спонтанный распад и превращения являются энергетически невозможными. В реально существующих стабильных ядрах обычно число нуклонов одного сорта находится в определенном соотношении с числом нуклонов другого сорта. Так, например, в стабильных ядрах при у4 < 36 число нейтронов и протонов примерно одинаково, а нейтронный избыток (изотопическое число) --- 1/2 N — Z)  [c.98]

Энергетическая неустойчивость ядер, сопровождающаяся изменением электрического заряда ядра без изменения его массового числа, связана с превращением в ядре протона в нейтрон (р -> п + - - е + V) или нейтрона в протон (п р + Н- v). При этих превращениях рождаются и выбрасываются во вне электрон е и антинейтрино (v) или позитрон е ) и нейтрино (v). Этот вид неустойчивости проявляется как бета-распад. К бета-распаду относятся Р -распад (электронная радиоактивность), -распад (позитронная радиоактивность) и электронный захват с /С или L электронных оболочек атома.  [c.99]

Электронный захват. Ядра, перегруженные протонами, или так называемые нейтронно-дефицитные ядра (по сравнению с составом устойчивых изотопов данного элемента), наряду с позитронным распадом испытывают также захват электрона из электронной оболочки своего же атома. При этом один из протонов ядра, поглотив электрон, превращается в нейтрон (р -j- е п + v) и ядро переходит в более устойчивое состояние. Наиболее вероятным является /С-захват, т. е. захват электрона ядром из А[ -слоя. Электронный захват из L-слоя примерно в 100 раз менее вероятен, чем 7 -захват. Электронный захват, протекающий по схеме Х + + 6 записи, А + е - А + v, энер-  [c.101]

Устойчивость ядер по отношению к -распаду. Ядро, перегруженное протонами, может испытать р -превращение, если выполняется условие  [c.149]


Вероятность распада w возбужденного ядра складывается из вероятности распада с испусканием у-кванта, из вероятности переходов с выбросом нейтрона или протона и т. д., т. е.  [c.180]

Первое затруднение. После экспериментального открытия нейтрона стало ясно, что атомные ядра построены из протонов и нейтронов и в состав ядер не входят ни электроны, ни позитроны. Ряд веских соображений приводит к заключению о том, что в ядре не могут содержаться электроны ( 21). Тогда возникает законный вопрос откуда же берутся электроны (позитроны), испускаемые при 3-распаде С решением этой трудности физика справилась довольно успешно еш,е в 30-х годах.  [c.236]

В результате любого (i-процесса ((V -распада электронного захвата) число нейтронов в ядре увеличивается или уменьшается на единицу. Поэтому можно полагать, что всякий р-процесс состоит в превращении нейтрона в протон или протона в нейтрон. Чтобы применить математические методы квантовой теории переходов, используем представление о протоне и нейтроне как о разных квантовых состояниях нуклона ( 22). р-распад можно трактовать как переход нуклона из состояния с изотопическим спином + Т,, в состояние с изотопическим спином + Т . Из квантовой механики известно, что вероятность w перехода системы из одного состояния в другое за единицу времени равна  [c.243]

Здесь же отметим, что в результате реакций типа (а, п), как правило, получаются ядра, обогащенные протонами. Чтобы обрести большую устойчивость, один из протонов такого ядра испытывает превра-щшИ С в нейтрон по схеме р -> п Н- е -f v с выбросом из ядра позитрона и нейтрино. Энергия распада распределяется  [c.288]

Нейтроны входят в состав ядра. Нейтрон в свободном состоянии, в отличие от протона, является нестабильны.м и распадается на протон и электрон с периодом полураспада Т ж 1,01 10 сек (р-распад нейтрона). Внутри ядра нейтрон может существовать неопределенно долго. В 1931 —1933 гг. В. Паули, анализируя закономерности р-распада (см. 41), предположил, что при этом распаде, кроме протона и электрона, испускается еще одна нейтральная частица с массой покоя, равной нулю. Эту частицу назвали нейтрино (v). Нейтрино уносит с собой недостающую энергию, недостающий импульс и недостающий вращательный момент (спин нейтрино s = /j). Вследствие малого эффективного сечения захвата нейтрино нуклонами (о 10 см —  [c.339]

В 1962 в ОИЯИ был открыт новый вид И. я.— д е-лительная изомерия. Оказалось, что у нек-рых изотопов трансурановых элементов U, Ри, Ат, m и Вк есть возбуждённые состояния с энергией 2—3 МэВ, к-рыо распадаются путём спонтанного деления ядер. Предполагается, что этот вид И. я. объясняется различием формы ядер в изомерном и основном состояниях (см. Деление ядер). Высоковозбужде1П]ые изомерные состояния могут испытывать протонный распад (см. Протонная радиоактивность).  [c.117]

Флуктуации интенсивности в спектре ЗП связаны с флуктуациями матричных элементов р-перехода и протонного распада. Для анализа этих флуктуаций развита статистич. модель, к-рая дозволяет определить плотность уровней проиежутечвого ядра. Эта информация важна, т. к. относится к области удалённых  [c.166]

Протоны сравнительно малых энергий (0,1—5 Мэе) также распределены вокруг Земли по широкой области, называемой протоносферой. На протоносферу в области, наиболее близкой к Земле, налагается внутренний радиационный пояс, состоящий из протонов высоких энергий (>30—40 Мэе). Внутренний радиационный пояс существует благодаря распаду нейтронов, образуемых в атмосфере Земли космическим излучением. Распределение протонов различных энергий вокруг Земли очень специфично чем ближе к Земле, тем больше энергия протонов в протоносфере. На больших расстояниях от Земли присутствуют протоны сравнительно небольших энергий. Полная плотность потока электронов с энергией Е более 40 кэв составляет около 1-10 электрон см -сек). Полная интенсивность потока протонов с энергией Е более 40 Мэе достигает в максимуме пояса 5-10 протон/ см -сек).  [c.265]

Бета-распад. Явление электронного бета-распада представляет собой самсдроизвольное прев-рагцение атомного ядра путем испускания электрона. В основе этого явления лежит способность протонов и нейтронов к взаимным превращениям. Масса свободного нейтрона больше массы свободных протона и электрона, вместе взятых, — следовательно, запас полной энергии нейтрона больше запаса энергии протона и электрона. Поэтому нейтрон может самопроизвольно превращаться в протон р с испусканием электрона и антинойтрипо v  [c.322]


Р -распад. Запишем количественные соотношения ядерной нестабильности, приводящ,ей к изменению заряда ядра — к -распаду. В процессе таких превращений число нуклонов А в начальном и конечном состоянии ядра одинаково, а происходит лишь превраш е-ние нейтрона начальнбго ядра в протон конечного ядра (п р + + + v) или, наоборот, превращение протона в нейтрон (р п + V или р + е -> п + у). Таким образом, при Р-превращениях один изобар переходит в другой.  [c.100]

Некоторые ядра, перегруженные иротонамн, помимо испускания позитронов или электронного захвата, могут испытывать протонную радиоактивность, однако вероятность такого процесса мала. Для большинства легких ядер превалирует р -превраи ение. Для тяжелых ядер сильно возрастает (примерно как Z ) вероятность электронного захвата, особенно /С-захвата, вследствие уменьшения с возрастанием Z объема той области, в которой находятся /С-элек-троны. Роль электронного захвата посравнениюс Р -распадом увеличивается с уменьшением энергии перехода  [c.102]

При малом Л устойчивыми по отношению к p -распаду будут ядра с АЛ/ 1, т. е. ядра или с равным числом Z и N, или содержащие Б-своем составе нейтронов больше, чем протонов. Легкие ядра будут испытывать р -распад в том случае, если в них нейтронов меньше, чем протонов. Например, ядра С , yN , joNe и т. д. испытывают позитронный распад.  [c.149]

Относительно первого этапа распада в наше время почти ничего не известно -достоверно и имеются лишь общие качественные рассуждения. Образование а-частичной группы из двух протонов и двух нейтронов происходит в кдерной материи, по-видимому, в самом процессе а-распада. Обособлению этой группы нуклонов, вероятно, способствует насыщение ядерных сил (каждый нуклон взаимодействует лишь с ограниченным числом ближайших к нему нуклонов, 22), так что образовавшаяся а-частица подвержена меньшему действию ядерных сил, и вместе с тем большему действию кулонов-ского отталкивания от протонов ядра, чем отдельные нуклоны. По-видимому, этим и объясняется самопроизвольный вылет а-частицы из ядра. Были предприняты многочисленные попытки рассмотреть процесс формирования а-частицы в ядре, были выдвинуты различные модели этого процесса, однако существенных результатов они пока не дали.  [c.228]

Аналогично, нозитронный 5-распад -> + е + следует рассматргшать как превращение протона ядра в нейтрон, позитрон и нейтрино  [c.239]

При 1юстроснии теории р-распада мы должны ввести в рассмотрите некоторое (электронио-нентрингюе) поле, квантом которого и является пара частиц — электрон и антинейтрино, а нуклонам следует приписать некоторый электронно-нейтринный заряд G G 1,4-Ю " эрг-см — постоянная Ферми). Далее можно построить оператор Я, энергии взаимодействия нуклонов с электронно-нейтринным полем из волновых функций -частицы ф, и нейтрино (антинейтрино) ср-. Функции ф,, ф должны удовлетворять уравнению Дирака. Оператор Я превращает волновую функцию протона в волновую функцию нейтрона и наоборот. Это утверждение равносильно предположению о том, что волновая функция начального состояния нуклона, испытывающего р-превращение, зависит не только от п юстранственных н спиновых координат, но и от зарядовой координаты Т, ( 22), которая может принимать только два значения, соответствующие нейтронному или протонному состоянию нуклона. Таким образом, в результате действия оператора  [c.243]

Полная ширина, характеризующая вероятность распада ядра, представляет сумму игирин Tj, Г,.....Г ,,. . . , которые соответствуют различным способам распада возбужденного ядра. Часто справа у символа Г ставится не цифровой индекс процесса, а буквенный индекс, выражающий название процесса. Например, Г — ширина уровня, отвечающая испусканию 7-кванта, Г — нейтронная ширина, Гр — протонная ширина и т. д.  [c.276]

Ядерные реакции могут протекать и под действием у-квантов, если их энергия превышает энергию связи нуклона в ядре. Энергия связи на нуклон в ядрах первой половины периодической системы составляет примерно 8 Л1эв. Поэтому для изучения реакций под действием фотонов необходимо, чтобы их энергия превышала 8 Мэе. Энергия связи дейтрона составляет только 2,225 Мэе. Облучая дейтерий у-фотонами, впервые в 1934 г. Д. Чедвик заметил, что у-фотоны с энергией hv 2,23 Мэе переводят ядра дейтерия (дейтроны) в возбужденное состояние, которое является неустойчивым и завершается распадом на нейтрон и протон. Ядерные реакции под действием уфотонов получили название фотоядерных реакций (фоторасщепления ядер или фотоядерного эффекта).  [c.289]

В последние годы открыт второй сорт нейтрино, так называемое нейтрино (и антниейтригю) мюонное н которое испускается например, при распаде я-мезонов -> (i" - - v я - [i v. Имеются основания считать, что мюонное нейтрино (v,, и v j и электронное нейтрино (v , vj, о которых шла речь выше, являются разными частицами. Заметим, что электронное нейтрино определяется как частица, испускаемая в процессе р -распада протона р -> п е -f а электронное антинейтрино — частица, испускаемая при р -распаде нейтрона п - р + ё v .  [c.340]

Резонансы (квазичастнцы) нестабильны относительно сильных взаимодействий. Обычные элементарные частицы стабильны относительно сильных взаимодействий и распадаются или способом слабых взаимодействий, или способом электромагнитшзтх взаимодействий, а некоторые из них (у, eTv, свободный протон и их античастицы) стабильны относительно всех видов взаимодействия.  [c.378]

В настоящее время наиболее точное значение масс нейтрона равно Шп = 1,0089860 0,0000010, а. е. м., а приближенное т 1,00898 а. е. м. = 939,5 Мэе = 1838,5 Таким образом, масса нейтрона на 2,5 Ше (на 1,3 Мэе) больше массы шротона. Поэтому энергетически возможен радиоактивный распад нейтрона на протон и электрон. Этот процесс будет рассмотрен в гл. II.  [c.36]


Смотреть страницы где упоминается термин Протонный распад : [c.206]    [c.195]    [c.196]    [c.196]    [c.366]    [c.165]    [c.86]    [c.380]    [c.274]    [c.322]    [c.335]    [c.425]    [c.430]    [c.99]    [c.144]    [c.148]    [c.176]    [c.221]    [c.348]    [c.372]    [c.20]   
Смотреть главы в:

Экспериментальная ядерная физика Кн.2  -> Протонный распад



ПОИСК



V°-Распад

Великое объединение. Поиск распада протона

Великое объединение. Распад протона

Изомерный протонный распад

Протон

Распад протона

Распад протона



© 2025 Mash-xxl.info Реклама на сайте