Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Гидродинамический этап эволюции системы

На этапе произошло значительное число столкновений, в малых объемах молекулярной системы установилось локальное равновесие и для описания ее состояния не требуется даже знания одночастичной функции состояния х, t), а достаточно знать только такие локальные макроскопические параметры, как пространственная плотность числа частиц п(х, t), макроскопическая скорость газа и(х, и локальная температура Т(х, I), которые являются различного рода моментами функции х, t) по скоростям. Этот этап эволюции неравновесной системы называется гидродинамическим. Исследование свойств системы на этом этапе составляет содержание неравновесной термодинамики.  [c.101]


Для общего случая конденсированной среды и без приближения систем со слабым взаимодействием в книге Д. Н. Зубарева [97] показана возможность описания гидродинамической стадии с помощью некоторой неравновесной функции распределения (т.н. неравновесным статистическим оператором), зависящей от времени через свои параметры. Метод неравновесного статистического оператора Зубарева затем развивался в работах С. В. Пелетминского (см. книгу [99]). Если соответствующим образом выбрать параметры, описывающие состояние системы, то можно построить уравнения для динамических переменных, которые будут справедливыми и на кинетическом этапе эволюции [100, 101.  [c.65]

Исходным уровнем принимаемого нами динамического подхода к кинетической теории является механика с ее законами движения (этому будет посвяшен 1 настоящей главы). Затем, используя идеи Боголюбова об иерархии релаксационных процессов в системах многих тел, мы перейдем к более грубому описанию системы в кинетической (а затем и гидродинамической) шкале времени. Идея последовательного офубления шкалы времени нам уже знакома, она оправдала себя при рассмотрении брауновского движения в гл. 2. Однако следует сразу оговориться, что теперь речь будет идти о совсем других временных и пространственных масштабах они будут характеризовать не особенности брауновского движения, а ту среду , которая в гл. 2 окружала крупную брауновскую частицу, воздействовала на нее случайным образом, но сама при этом считалась уже равновесной. При этом для характеристики молекулярной среды нам нужно было знать о ней до чрезвычайности мало помимо ее температуры только коэффициент вязкости т/, т. е. характеристику, возникающую на последнем, гидродинамическом этапе ее эволюции как самостоятельной системы. Мы же в этой главе будем рассматривать и более ранние этапы ее эволюции.  [c.284]

В результате применения метода двухмасштабных разложений к системе гидродинамических и термодинамических уравнений, описывающих поведение самогравитирующих газопылевых сгустков, построена математическая модель процессов эволюции сгустков, которая сводится к решению граничной задачи для уравнений Лэна-Эмдена, задачи Коши для нелинейного дифференциального уравнения 1-го порядка относительно энтропии, учитывающего источники энергии за счет распада радиоактивных примесей, и уравнений переноса излучения в диффузионном приближении. Численные расчеты, проведенные для сгустков в широком диапазоне их масс и значений характерной плотности, позволили выбрать для каждого сгустка вероятные начальные распределения плотности, температуры и давления. Проведено численное моделирование и исследованы основные этапы процесса эволюции газового сгустка (с отношением удельных теплоемкостей 7 = 1.57), имеющего массу, эквивалентную массе Земли, характерную плотность 0.4 г/см и теплоемкость при постоянном давлении 1.5-10 эрг (г-К), при наличии в его веществе примесей изотопов корот-кодвижущего А1 с массовой концентрацией сд 10 . Проведена оценка времени эволюции сгустка до начала конденсации.  [c.449]



Смотреть страницы где упоминается термин Гидродинамический этап эволюции системы : [c.7]    [c.328]   
Смотреть главы в:

Термодинамика и статистическая физика Т.3 Изд.2  -> Гидродинамический этап эволюции системы



ПОИСК



107-Этапы

Гидродинамическая система

Да гидродинамическое

Система эволюции

Эволюция



© 2025 Mash-xxl.info Реклама на сайте