Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Система уравнений газодинамики. Начальные и граничные условия

Математическая сложность уравнений движения сплошной среды позволяет получить точные решения для ограниченного числа относительно простых течений. В одномерном случае это, например, рассмотренные выше ударные волны и простые волны разрежения, в двумерном — течение Прандтля — Майера [4]. Иногда, при определенных начальных и граничных условиях, задача имеет автомодельное решение и система уравнений газодинамики сводится к системе обыкновенных дифференциальных уравнений [1], анализ которых значительно проще. Широкое развитие получили приближенные методы решения, основанные на упрощении исходной задачи. Здесь прежде всего необходимо отметить асимптотические методы [21], эффективность которых в самых разных областях физики всеми признана. Преимущество точных и приближенных аналитических решений очевидна. Они играют важную роль не только для понимания физической картины явления, но и необходимы при постановке математических задач. Но обычно, даже упрощенные уравнения не удается проинтегрировать, и они должны решаться численно. Поэтому методы численного моделирования широко используются для предсказания и изучения поведения сложных физических систем.  [c.35]


Полученную систему уравнений при решении конкретных задач необходимо интегрировать с учетом конкретных граничных и начальных условий. Система уравнений Эйлера представляет собой систему квазилинейных уравнений первого порядка. В случае На, = О получим основную систему уравнений классической газодинамики. В курсе газовой динамики показано, что эта система гиперболического типа. Поскольку при решении уравнений Эйлера с соответствующими начальными и граничными условиями мы получаем с определенной степенью точности информацию о реальных течениях сжимаемых газовых сред, уместно ввести понятие о математической модели реального явления.  [c.135]

К системе дифференциальных уравнений газодинамики добавляются соответствующие начальные и граничные условия.  [c.15]

Для решения большинства своих задач гидроаэро- и газодинамика применяют строгие математические приемы интегрирования основных дифференциальных уравнений при установленной системе граничных и начальных условий или другие эквивалентные им математические методы (например, конформное отображение в задачах плоского движения идеальной жидкости). Для получения суммарных характеристик используются такие общие теоремы механики, как теорема количества и моментов количеств движения, энергии и др. Однако большая сложность и недостаточная изученность многих явлений вынуждают механику жидкости и газа не довольствоваться применением строгих методов теоретической механики и математической физики, столь характерных, например, для развития механики твердого тела, но и широко пользоваться услугами всевозможных эмпирических приемов и так называемых нолуэмпирических теорий, в построении которых большую роль играют отдельные опытные факты. Такие отклонения от чисто дедуктивных методов классической рациональной механики естественны для столь бурно развивающейся науки, как современная механика жидкости и газа.  [c.15]


Смотреть главы в:

Аэродинамика Ч.1  -> Система уравнений газодинамики. Начальные и граничные условия



ПОИСК



Газодинамика

Граничные уравнения

Граничные условия

Уравнения и граничные условия

Условия начальные

Условия начальные (см. Начальные



© 2025 Mash-xxl.info Реклама на сайте