Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Волокнистые металлические материалы

Какие разновидности волокнистых металлических материалов Вы знаете  [c.428]

Рис. 114. Схематическое изображение особенностей строения некоторых основных типов композиционных материалов на металлической основе (I группа — волокнистые и дисперсионно-упрочненные материалы II группа — биметаллы и многослойные плакированные металлические материалы). Рис. 114. <a href="/info/286611">Схематическое изображение</a> <a href="/info/729858">особенностей строения</a> некоторых основных <a href="/info/762059">типов композиционных</a> материалов на <a href="/info/336545">металлической основе</a> (I группа — волокнистые и <a href="/info/544402">дисперсионно-упрочненные</a> материалы II группа — биметаллы и многослойные плакированные металлические материалы).

При получении волокнистых композиционных материалов с использованием энергии взрыва применяют схему продольного распространения фронта детонации. При этом металл матрицы, заполняющий межволоконное пространство, приходит в соприкосновение с нижним слоем металла и соединяется с ним. Волокна в зоне сварки иногда теряют устойчивость и приобретают волнообразную форму чаще всего это явление наблюдается тогда, когда отношение толщины листа материала матрицы к диаметру армирующего волокна меньше единицы. Образовавшиеся гофры можно удалить путем небольшой подкатки полученного листового композиционного материала. Режимы подкатки (температура, степень обжатия) выбирают в зависимости от состава материала. Э. С. Атрощенко и др. было показано, что при использовании в качестве упрочнителя металлических волокон прокатку можно проводить как в продольном, так и в поперечном относительно волокон направлении со степенями обжатия до 10—15% за один проход.  [c.163]

Принципиальная технологическая схема изготовления волокнистых композиционных материалов с использованием метода плазменного напыления матрицы состоит из следующих операций 1) укладки волокон, например, на металлическую фольгу  [c.171]

В качестве армирующих элементов слоистых и волокнистых композиционных материалов с металлической матрицей применяются волокна из углерода, бора, карбида кремния, оксида алюминия, высокопрочной стальной проволоки (сетки), бериллиевой, вольфрамовой и других проволок. Для обеспечения химической стойкости в расплаве матрицы и сцепления волокна с матрицей применяют защитные барьерные покрытия на волокнах из карбидов кремния, титана, циркония, гафния, бора, из нитридов и окислов этих и других элементов. При этом получается сложная многокомпонентная система матрица — переходный слой продуктов химического воздействия матрицы с барьерным покрытием — слой волокна. Механические свойства за счет армирования повышаются в 1,5—3 раза (удельные в 2—5 раз) в зависимости от объемной доли и способа введения армирующих волокон.  [c.78]

Применение новых материалов. Повышение прочности материалов в деталях машин ограничивается чувствительностью материалов к концентрации напряжений и повышением склонности к хрупким разрушениям. Поэтому большие перспективы имеют волокнистые металлические (так называемые композитные) материалы. Они представляют собой композиции из высокопрочных волокон в мягкой основе (матрице). Основную нагрузку воспринимают волокна, а матрица обеспечивает равномерное распределение нагрузки между волокнами.  [c.64]


Металлические волокнистые композиционные материалы  [c.114]

Терминология. Термин волокнистые композиционные материалы означает, что для упрочнения материала используются волокна. Поэтому их называют также композиционными материалами,, армированными волокнами. Свойства различных типов армирующих волокон перечислены в табл. 1.2. Как видно из таблицы все армирующие волокна обладаю высокой прочностью диаметр волокон обычно составляет 5 100 мкм. Сами волокна не используются для изготовления конструкций, изделий и т. д. Лишь соединяя их между собой с помощью полимерной, металлической или другой матрицы, можно получать композиционные материалы и изготавливать из них листы, трубы и другие изделия. Эти материалы и представляют собой волокнистые композиционные материалы, или армированные материалы. Для получения армированных углерод-  [c.16]

Волокнистые композиционные материалы. В волокнистых композиционных материалах упрочнителем служат углеродные, борные, синтетические, стеклянные и др. волокна, нитевидные кристаллы тугоплавких соединений (карбида кремния, оксида алюминия и др.) или металлическая проволока (стальная, вольфрамовая и др.). Свойства материала зависят от состава компонентов, количественного соотношения и прочности связи между ними. Для металлических композиционных материалов прочная связь между волокном и матрицей достигается благодаря их взаимодействию. Связь между компонентами в композиционных материалах на неметаллической основе осуществляется с помощью адгезии. Повышение адгезии волокон к матрице достигается их поверхностной обработкой. Производится осаждение нитевидных кристаллов на поверхность волокон. При этом получаются  [c.263]

Волокнистые композиционные материалы. Это в основном микро-структурированные композиционные материалы, характеризующиеся тем, что в качестве наполнителя используются одномерные армирующие компоненты, один из размеров которых значительно превышает два других. В волокнистых композиционных материалах пластичная матрица армирована высокопрочными волокнами толщиной от нескольких микрометров до сотен микрометров. В качестве армирующих волокон могут использоваться металлические проволоки, усы и кристаллы фаз, полученных направленной кристаллизацией волокна неметаллов, таких как углерод и бор, полученных по специальным технологиям керами-  [c.191]

Пористые волокнистые материалы 3—43 Пористые порошковые металлические материалы  [c.516]

Увеличение масштабов применения металлических композитов, армированных высокомодульными волокнами, требует разработки разнообразных технологических методов обработки и получения изделий из них. В настоящее время, по-видимому, нельзя категорично судить о преимуществах или недостатках тех или иных методов получения изделий из волокнистых композиционных материалов, в этом плане существенный интерес представляют попытки применения методов обработки давлением для получения заготовок или изделий из листового бороалюминия, материала, находящего все большее применение в конструкциях летательных аппаратов [70].  [c.254]

Перспективными являются волокнистые композиционные материалы. Высокая прочность и пластичность в этом случае достигается путем армирования мягкой металлической матрицы бездефектными, нитевидными кристаллами (усами) металлов и неметаллов. Если количество дефектов кристаллического строения превышает величину а, то дальнейшее их увеличение упрочняет металл.  [c.64]

Перспективными являются волокнистые (композиционные) материалы. Высокая прочность и пластичность в этом случае достигается путем армирования мягкой металлической матрицы (медь, алюминий, серебро, нихром, полимеры и т. д.) бездефектными, нитевидными кристаллами (усами) неметаллов (а—АЬОз, углеродные волокна, карбиды В4С, 51С и др.) .  [c.67]

Несмотря на широкое распространение на практике гетерофазных покрытий в зарубежной литературе нет монографий, посвященных этим композиционным материалам (КМ). В имеющихся публикациях рассмотрены преимущественно КМ с органической полимерной матрицей и волокнистой упрочняющей фазой или металлическим материалом, содержащим макрочастицы, получаемые механическими способами (смешивание, прессование с последующей термообработкой).  [c.5]

Высокая прочность волокнистых материалов связана с использованием пластического течения матрицы и нагружением всех волокон композиции. Такие материалы должны обладать высокой термической стойкостью. Основные закономерности поведения металлических материалов с непрерывными волокнами были установлены на композиции медь—вольфрам. Первые опыты применения волокнистых композиционных материалов для электродов контактных машин не дали пока удовлетворительных результатов. По-видимому, это было связано с недостаточно удовлетворительным качеством материалов и отработанной технологией их изготовления, представляющей еще много принципиальных и технологических трудностей. Однако ожидаемые преимущества от использования таких материалов в недалеком будущем несомненно приведут к интенсивным научным поискам и созданию стойких материалов на основе высокопрочных волокон.  [c.27]


Армирование состоит во введении в полимер волокнистых упрочняющих материалов стекловолокна (стеклопластики), тканей (текстолнты), асбоволокнистых материалов (асбопластики), бумаги (гетинакс), металлических волокон, нитевидных кристаллов ( усов ) и т. д. Эти волокна образуют более или менее жесткий каркас, скрепленный полимерной основой. При большой степени наполнения каркас не позволяет полимеру свободно рас ширяться и тем самым уменьшает его КТР. Для жестких волокон, обладающих низким КТР. коэффициент линейного расширения полимера может быть уменьшен в 10 раз и более. Из армированных полимеров изготовляются многие изделия РЭА.  [c.137]

Методы порошковой металлургии широко применяют о иромы/л-ленности для получения металлокерамическпх, металлических и керамических композиций. Достаточно отметить получаемые этим методом и широко используемые в технике металлорежуш,ие твердосплавные пластины, представляющие собой спеченную смесь порошков кобальта и карбидов вольфрама или титана. Однако для получения волокнистых композиционных материалов методы порошковой металлургии стали использовать относительно недавно, причем почти все эти методы — прессование с последующим спеканием, горячее прессование, экструзия, динамическое уплотнение и др. — оказались пригодными для указанных целей, разумеется, в зависимости от природы составляющих композиционных материалов — матрицы и упрочнителя.  [c.150]

Как правило, метод сварки взрывом используют для получения слоистых и слоисто-волокнистых композиционных материалов, содержащих либо разнородные металлические слои, либо пластичную матрицу, упрочняемую высокопрочиой металлической проволокой. Примеры таких композиций 1) алюминий, армированный стальной проволокой, использующийся в качестве кон-6 бз  [c.163]

Наиболее ранние работы по использованию метода плазменного напыления для получения волокнистых композиционных материалов с металлической матрицей были выполнены Крейдером  [c.171]

Повышение жаропрочности никелевых сплавов достигается армированием их вольфрамовой или молибденовой проволокой. Металлические волокна используют и в тех случаях, когда требуются высокие теплопроводность и электропроводимость. Пер-спективньши упрочнителями для высокопрочных и высокомодульных волокнистых композиционных материалов являются нитевидные кристаллы из оксида и нитрида алюминия, карбида и нитрида кремния, карбида бора и др., имеющие = 15 000-н28 000 МПа и Е = 400 4-600 ГПа.  [c.424]

Защитные облицовки для кокилей имеют своим назначением повышение стойкости кокилей, уменьшение загрязненности сплава, облегчение извлечения отливок. Характер облицовочного состава зависит от вида литья. При литье тугоплавких материалов в графитовые формы рекомендуется покрывать их рабочие поверхности волокнистыми углеграфитовыми материалами (угольной тканью УУТ-1, графитовой тканью ТГ-2, графитовым войлоком, графитовой ватой). Для отливки титановых изделий применяют графитовые стержни из массы ATM-I, опрессованной в металлическом ящике при давлении 50—100 кгс/см , со смазкой крем-нийорганической жидкостью с серебристым графитом.  [c.47]

Искусственное упрочнение гипсовых изделий производят с помощью волокнистых армирующих материалов, вводимых в состав формовочной массы или являющихся частями констр>тсции самого изделия. В качестве арматуры используются органические волокна, картонная оболочка и т.д. Роль арматуры могут выполнять металлические стержни, проволока или сетка. Однако применять стальную а] матуру в гипсовых изделиях без защитного слоя нельзя из-за сильной коррозии.  [c.296]

Волокнистые композиционные материалы на металлической основе имеют более высокие характеристики, зависящие от свойств матрицы. В качестве матрицы используются металлы, имеющие небольшую плотность (алюминий, магний, титан), их сплавы, а также никель для создания жаропрочных материалов. В качестве упрочнителя используют стальную проволоку (наиболее деше-  [c.264]

Совместимость волокнистого упрочнителя — проволоки с матрицей, является, как указывалось выше, очень ваншой проблемой при разработке композиционных металлических материалов, упрочненных проволокой [18, 24]. Установлена важность взаимодействия волокна с матрицей на границах раздела. Для изучения модельной системы были выбраны взаимно нерастворимые компоненты [6, 7, 11, 12, 14, 19]. На модельной композиционной системе со взаимно нерастворимыми компонентами медь — вольфрамовая проволока получены высокие значения длительной прочности при температуре выше 0,9 от абсолютной температуры плавления матрицы.  [c.239]

В работах [8 ] и [9 ] представлен обзор результатов по исследованию механических свойств высокопрочных металлических волокнистых композиционных материалов. В работе [8] приведены (с. 194—195) некоторые данные об анизотропии модуля упругости Е алюминиевого сплава, армированного однонаправленными борными волокнами, и значения Е для композиций из алюминиевой матрицы,  [c.132]

При использовании масел этой группы не происходит глубоких органических изменений их свойств в них накапливаются в основном лишь так называемые механические примеси, попадающие извне пыль, песок, металлическая пыль, волокнистые текстильные материалы и вода. Следовательно, в атих условиях применения происходит не сраба-тываемость масел, а лишь их загрязнение.  [c.777]

Объемный вес волокнистых теплоизоляционных материалов (минеральной ваты) определяют на приборе (рис. 12, а). Вату весом 1 кг укладывают горизонтальными слоями в металлический цилиндр 1 прибора. Сверху на вату опускают металлический диск 2 весом 7 кг, что соответствует давлению 0,02 кПсм . Вату выдерживают под нагрузкой в течение 5 мин. Высоту сжатого слоя ваты в цилиндре определяют по шкале 3, находящейся на стержне. Объемный вес определяют делением веса ваты на объем, занимаемый ватой в цилиндре.  [c.59]

Металлические композиционные (гетерогенные, состоящие из различных веществ с существованием границ раздела между ними) материалы совмещают в себе высокие тепло- и электропроводимость и пластичность, склонность к сварке и другие свойства металлов и одновременно — жаропрочность, хиглическую инертность или высокую твердость неметаллических веществ (боридов, карбидов, оксидов и некоторых простых веществ). Это керами-ко-металлические материалы (керметы), волокнистые композиционные и дисперсионно-отвержденные или твердеющие, внутренне-окисленные сплавы, например САП (спеченный алюминиевый порошок) и другие гетерогенные сплавы, обладающие высокотемпературной, теоретически вплоть до температуры плавления матрицы, прочностью [9].  [c.6]



Смотреть страницы где упоминается термин Волокнистые металлические материалы : [c.5]    [c.158]    [c.249]    [c.105]    [c.117]    [c.349]    [c.625]    [c.438]    [c.285]    [c.121]    [c.72]    [c.683]    [c.246]    [c.269]    [c.325]    [c.76]   
Смотреть главы в:

Усталость и хрупкость металлических материалов  -> Волокнистые металлические материалы



ПОИСК



Волокнистость

Волокнистые композиционные материалы металлические

Волокнистые композиционные материалы металлические производства

Волокнистые материалы

Волокнистые металлические композиционные материалы Гардымов)

Композиционные материалы с металлической матрицей и волокнистым упрочнителем

Металлические материалы

Основные преимущества волокнистых металлических материалов перед обычными металлами



© 2025 Mash-xxl.info Реклама на сайте