Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Металлургия сварки под флюсом

Металлургия сварки под флюсом  [c.212]

МЕТАЛЛУРГИЯ СВАРКИ ПОД ФЛЮСОМ  [c.207]

В отличие от процессов большой металлургии взаимодействие влаги с металлом при дуговой сварке сопровождается не только химическими реакциями, но и электрическими явлениями. Поэтому при сварке под флюсом на аноде возможно развитие реакции  [c.172]

Несмотря на большое значение реакций между газовой фазой и жидким металлом, представляется весьма удобным металлургические процессы при сварке под флюсом рассматривать как протекающие между жидким шлаком и металлом. Это позволяет весьма сложные металлургические реакции, протекающие в сварочной дуге, объяснять на основании хорошо изученных в металлургии стали процессов.  [c.101]


В предлагаемой книге сделана попытка обобщить и дополнить литературные материалы по этому вопросу. Наибольшее внимание уделено металлургии процесса сварки под флюсом. Расположение материала в предложенной последовательности должно подвести читателя к правильному выбору флюса по металлургическим свойствам.  [c.4]

Расширение номенклатуры свариваемых сталей и появление новых ответственных задач требует углубленного изучения отдельных элементов металлургии и технологии сварки под флюсом. Один из наиболее важных среди них — сварочный флюс-шлак. От состава и физико-химических свойств флюса-шлака зависят состав и качество не только сварного шва, но соединения в целом.  [c.91]

В литературе [168, 201, 244, 254, 284] освещены главным образом вопросы металлургии, технологии и техники выполнения сварки (ручная дуговая, автоматическая под флюсом, точечная, электронно-лучевая) по прокатной окалине и грунтованной поверхности. Сведения по статической прочности и ударной вязкости сварных соединений, выполненных по грунту, весьма ограничены.  [c.91]

Автоматическая сварка алюминиевых сплавов вольфрамовым электродом. В Московском авиационном технологическом институте (МАТИ) разработан метод автоматической сварки алюминиевых сплавов АМц и АМг-5 малых толщин (от 1 до 3 мм) вольфрамовым электродом закрытой дугой под флюсом. Флюсы плавленные, содержащие недорогие технические соли, применяемые в металлургии алюминия. Для сварки сплава АМц рекомендуется флюс МАТИ-1, для сварки сплава АМг-5— флюс МАТИ-5. Сварка выполняется на постоянном токе прямой полярности, Режимы сварки приведены в табл. 21.  [c.576]

Любавский К. В., Металлургия авто.матической сварки малоуглеродистой стали под флюсо.м, ЦНИИТМАШ, кн. 14, Машгиз, 1948.  [c.140]

Л ю б а в с к и й К. В. Металлургия автоматической сварки малоуглеродистой стали под флюсом, — Вопросы теории сварочных процессов, М,, Машгиз, 1948, с, 86—214. (ЦНИИТМАШ, кн, 14).  [c.241]

Разработанные в 90-х гг. XIX в. газовая и термитная сварки уже в начале XX в. стали широко применяться и временно обогнали в своем развитии электродуговую сварку. Однако в дальнейшем, главным образом в связи с разработкой ряда вопросов металлургии сварки, дуговая сварка стала основным промышленным способом, широко используемым при изготовлении и ремонте металлических конструкций. Этому способствовала и механизация процессов дуговой сварки, особенно разработка автоматической и полуавтоматической сварки под слоем флюса.  [c.7]


В сварочной металлургии особая роль принадлежит электролитам типа ионных растворов, которые образуются при плавлении флюсов, электродных покрытий и порошковых проволок и активно взаимодействуют с металлами. Остальные виды электролитов используются при подготовке металлов под сварку для травления или участвуют в процессах электрохимической коррозии сварных соединений.  [c.288]

В середине 50-х годов Б. И. Медовар и С. М. Гуревич (ИЭС) разработали для сварки высоколегированных сталей и сплавов принципиально новые флюсы — бескислородные или галоидные, которые внесли коренные изменения в металлургию сварки аустенитных сталей [157]. Эти флюсы дали возможность применять титансодержаш ие электродные проволоки и значительно повысить стойкость сварных швов против образования горячих трещин. Создание галоидных флюсов позволило успешно решить задачу автоматизации сварки сплавов алюминия и титана, ряда новых марок жаропрочных и нержавеющих сталей и сплавов. Больше того, создание указанных флюсов сделало автоматическую сварку под флюсом вполне конкурентоспособной в отношении сварки новых материалов и сплавов — с аргонодуговой сваркой. Например, применение автоматической сварки полуоткрытой дугой по слою флюса алюминия и его сплавов оказалось более эффективным, чем аргоно-дуговая сварка.  [c.124]

В России интенсивное применение сварки с одновременным проведением широкого круга исследований по технологии, металлургии, прочности сварных конструкций, разработке сварочного оборудования началось с середины 20-х годов в различных регионах страны. Во Владивостоке (В.П. Вологдин, Н.Н. Рыкалин, Г.К. Татур, С.А. Данилов), в Москве (Г.А. Николаев, К.К. Хренов, К.В. Любавский) в Ленинграде (В.П. Никитин, А.А. Алексеев, Н.О. Окерблом) и т.д. Особую роль в развитии и становлении сварки сыграл академик Е.О. Патон, создавший в 1929 г. лабораторию, а впоследствии и Институт электросварки АН УССР, в котором в конце 30-х годов был разработан новый способ - автоматическая сварка под флюсом. Там же в 1949 г. был создан принципиально новый вид сварки плавлением - электрошлаковая сварка. Широкое применение в промышленности находит разработанный в 50-х годах в ЦНИИТМАШе К.В. Любавским и Н.М. Новожиловым способ сварки плавящимся металлическим электродом в среде углекислого газа. Его существенными преимуществами является универсальность (автоматический и полуавтоматический), высокая производительность и качество, экономичность. Электронно-лучевая сварка была разработана французскими учеными в конце 50-х годов. Использование для сварки оптических квантовых генераторов-лазеров началось в 60-х годах. Сварка занимает достойное место в ряду других технологических процессов. Это обусловлено универсальностью, возможностью значительной экономии металла, возможностью создания уникальных конструкций, которые при других технологических процессах создать невозможно.  [c.9]

Реакция серы и фосфора. Оба эти элемента крайне вредны для аустенитных швов, особенно фосфор. Чтобы предотвратить горячие трещины в стабильноаустенитных швах, приходится ограничивать содержание фосфора до 0,01 %. Удаление его из сварочной ванны путем окисления в принципе возможно, но в практике сварки аустенитных сталей не реализуется, так как фосфор обладает сравнительно малым сродством к кислороду. Чтобы окислить фосфор, пришлось бы сначала окислить такие легирующие элементы, как алюминий и титан. Данные об окислении фосфора при сварке под флюсом и электрошлаковой сварке приведены в табл. 17. В этих условиях одной из главных задач металлургии сварки жаропрочных сталей и сплавов является не удаление фосфора из сварочной ванны, а недопущение дополнительного загрязнения ее фосфором. Речь идет о возможном восстановлении  [c.72]

О к- а д а X. и др. Сварка под флюсом о использованием руб.лепой проволокп. Реферат. Журнал Металлургия , раздел Сварка , 1964, Л" И.  [c.282]

В сварочной металлургии нельзя сделать смену шлаковых фаз и поэтому полноту извлечения можно регулировать только соотношением объемов жидкого металла и шлака ( шл), которое при сварке под флюсом и при сварке толстопокрытными электродами достаточно велико (0,35—0,5).  [c.233]


У нас основным видом сварки является автоматическая электродуговая сварка под флюсом. В последние годы 3 СССР созданы новые прогрессивные способы сварки. Среди них выделяется своей особой эффективностью электрошлакозая сварка, разработанная в Институте электросварк и.м. Е. О. Патока. С ее появлением и дальнейшим развитием открылась чрезвычайно ценная воз-моуКность электрошлакового переплава легирова (ных сталей и сплавов, резко улучшающая их качество. У нас в металлургии уже работают первые установки, осуществляющие электрошлаковый переплав — новейший процесс, которого еще нет за рубежом.  [c.6]

В книге изложены последние достижения по металлургии, металловедению и технологии сваркн плавлением жаропрочных аустенитных сталей и сплавов на железохромоникелевой и никелехромовой основе. Рассмотрены особенности сварки указанных сталей и сплавов под флюсом, в среде аргона и углекислого газа, электрошлаковой сварки, сварки плазменной дугой и электронным лучом, а также ручной элек-тродуговой сварки.  [c.2]

Сварка и свариваемые материалы В 3-х т. Т. I. Свариваемость материалов. Справ. нзд./Под ред. Э. Л, М а ка р о в а М. Металлургия, 1991, с. 528. Справочное нэданне состоит из трех томов. Первый том включает общие положения по свариваемости материалов, а также конкретные данные о составе углеродистых сталей и особенностях нх сварки, низко- и высоколегированных сталей, стального и чугунного лнтья цветных металлов и сплавов, неметаллических материалов. Приведены сведения о выборе вспо.могательных материалов (флюсов, защитных газов, электродов) и режимов сварки. Второй и третий тома выйдут в свет в 1992 и 1993 гг.  [c.4]


Смотреть страницы где упоминается термин Металлургия сварки под флюсом : [c.5]   
Смотреть главы в:

Ручная дуговая сварка Издание 6  -> Металлургия сварки под флюсом



ПОИСК



Металлургия сварки

Сварка Флюсы

Сварка под флюсом

Флюсы



© 2025 Mash-xxl.info Реклама на сайте