Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Молекулярные и молярные потоки переноса

МОЛЕКУЛЯРНЫЕ И МОЛЯРНЫЕ ПОТОКИ ПЕРЕНОСА  [c.6]

Изложим подход, основанный на введении полных коэффициентов переноса учитывающих одновременно и молекулярный и молярный переносы во всей пристеночной области. Ограничимся вначале рассмотрением только уравнения сохранения количества движения. Рассмотрим полную вязкость турбулентного потока, являющуюся суперпозицией молекулярной (ламинарной) вязкости и молярной (турбулентной) вязкости. Очевидно, вблизи стенки полная вязкость должна переходить в молекулярную вязкость, вдали от стенки — в турбулентную вязкость. Учитывая это, определим полную вязкость формулой  [c.47]


Основная трудность создания теории турбулентного движения заключается в невозможности получения замкнутой системы уравнений, т. е. в невозможности выразить компоненты тензора турбулентных напряжений (XI.44) через осредненные скорости движения. Как показано ранее, по аналогии с ламинарными потоками вводят коэффициенты переноса при турбулентном движении, складывающиеся из коэффициентов молекулярного и молярного или турбулентного переносов.  [c.327]

В работах Л. Г. Лойцянского (1960, 1962) гипотеза локальности турбулентного переноса, лежащая в основе полуэмпирической теории Прандтля — Кармана, была распространена на случай, когда молекулярные и молярные процессы количественно сравнимы друг с другом во всей области течения и пренебрегать их взаимодействием нельзя. Таким образом была установлена возможность построения теории турбулентного-переноса, не связанной с разбивкой потока на дискретные слои.  [c.536]

Критерий Рейнольдса можно рассматривать и с другой точки зрения, а именно как отношение двух переносов - вдоль потока и поперек потока. Такое определение числа Рейнольдса оказывается общим и более четко характеризует физическое содержание этого критерия. Для ламинарного режима поперечный перенос осуществляется молекулярным движением, для турбулентного движения - молярным движением, коррелированным с основным движением.  [c.10]

В общем случае можно считать, что в турбулентном потоке перенос количества движения и тепла осуществляется как путем молекулярного движения, так и за счет турбулентных пульсаций молярных объемов жидкости. Часто это обстоятельство выражают простой суммой вида  [c.11]

Наоборот, при молекулярных числах Прандтля, больших единицы (Рг>1), турбулентный (молярный) характер переноса тепла преобладает над молекулярным, т. е. обычной теплопроводностью. Это приводит к тому, что в некоторой внешней части вязкого подслоя развивается турбулентный перенос тепла и, следовательно, температурный подслой становится тоньше вязкого. Такого рода соотношение между толщинами вязкого и температурного подслоев особенно резко проявляется в потоках очень вязких жидкостей (смазочных масел, глицерина и др.), у которых Рг 1.  [c.591]

В правой части уравнения (6.6) первый член учитывает молекулярный, а второй - молярный (конвективный) перенос теплоты. При конвективном теплообмене среды с поверхностью уравнение (6.6) может быть преобразовано при условии, что на поверхности касательная к ней скорость движения среды равна нулю. Нормальная к поверхности составляющая скорости зависит от наличия на поверхности потоков вещества (испарение с поверхности, каталитическое разложение вещества и т.д.). В случае наличия таких потоков возникает нормальное к поверхности движение среды (см. гл. 12).  [c.280]


Турбулентная среда рассматривается как сплошная и на нее распространяются все свойства, присущие сплошной среде. Как было отмечено выше, свойствами сплошной среды являются параметры переноса. В таком случае турбулентная среда должна иметь свою вязкость , отличную от молекулярной вязкости. Если молекулярная вязкость предопределяется молекулярными особенностями среды и проявляет себя только при относительном движении отдельных слоев потока, то турбулентная вязкость предопределяется молярным движением турбулентных частиц , имеет место и проявляет себя только при турбулентном движении потока. Так как особенности турбулентного движения в первую очередь характеризуются числом Рейнольдса, то турбулентная вязкость также должна предопределяться числом Рейнольдса. Зависимость турбулентной вязкости от самого движения требует того, чтобы она была переменной в пределах потока, т.е. турбулентная вяз-  [c.58]

В капиллярно-пористом теле одновременно происходит молярный и молекулярный перенос связанного вещества в различных сс стояниях. Обозначим плотность потока молярно-молекулярного переноса через /  [c.51]

При вычислении теплоотдачи в турбулентном потоке жидкости в трубе можно принимать двухслойную (Прандтля — Тейлора) или трехслойную (Шваба — Кармана) динамическую схему потока. Предполагается, что в ламинарном подслое перенос тепла и количества движения определяется молекулярным процессом, в турбулентном ядре — молярным перемешиванием, а в переходной области (трехслойная схема) действуют оба механизма переноса. Применительно к высокотеплопроводным жидкостям, когда Рг 1 возникает необходимость учета молекулярного переноса и в области турбулентного ядра (Л. 7. 8]. В литературе при рассмотрении тепловых задач наряду с динамическим слоем вводится понятие о тепловом слое [Л. 1, 2, 6, 11]. Применительно к высокотеплопроводным жидкостям общая теория вопроса была изложена в [Л. 3]. В качестве расчетного выхода Левичем [Л. 3] была рассмотрена суперпозиция двухслойных динамической и тепловой схем потока. Дальнейшее развитие этой теории было сделано Боришанским [Л. 12], рассмотревшим суперпозицию трехслойных динамической и тепловой схем потока. В расчетном плане в этих случаях возникает вопрос  [c.436]

В аналогии Рейнольдса постулируется равенство коэффициентов молярного переноса импульса и теплоты в любой точке потока и считается, что при характерном для турбулентных потоков интенсивном перемешивании среды влияние процессов молекулярного переноса пренебрежимо мало.  [c.211]

В основе наиболее употребительных в теории турбулентного пограничного слоя полуэмпирических теорий лежит допущение об их дифференциальной сущности, заключающейся в том, что механизм чисто турбулентного (молярного) переноса количества движения полностью определяется заданием местных значений производных от осредненных скоростей по поперечной к направлению потока координате и физических констант жидкости. Величина самой осредненной скорости движения жидко--сти в рассматриваемой точке установившегося потока, как скорость поступательного равномерного движения системы координат, которую можно мысленно связать с рассматриваемым движущимся слоем, не может иметь влияния на механизм турбулентного переноса. Кроме того, обычно предполагается, что в достаточном удалении от твердой поверхности молярный обмен настолько превалирует над молекулярным, что можно пренебречь обычной вязкостью и теплопроводностью по сравнению с их турбулентными аналогами.  [c.535]

Принципиальное значение для дальнейшего имеет вопрос о том, сохраняется ли в явлениях переноса тепла деление потока на подслой с молекулярной природой переноса (вязкий или ламинарный подслой) и турбулентное ядро , где процессы переноса чисто молярные, не зависящие от молекулярной структуры жидкости, и каково должно быть соотношение мел<ду толщинами вязкого и температурного подслоев.  [c.738]


При рассмотрении молекулярного тепло- и массопереноса ( 6-6) мы проанализировали влияние большой группы критериев подобия на распределение безразмерных потенциалов. Перестройка механизма, связанная с образованием молярного потока вещества и тепла, приводит к изменению характера влияния на процесс переноса некоторых из уже рассмотренных критериев подобия. Так, критерии Поснова и Кос-совича не являются больше автомодельными по отношению к полям некоторых потенциалов. В высокоинтенсивных процессах важную роль начинают играть новые критерии подобия, характерные только для молярного переноса. Сравнение влияния отдельных критериев в молекулярных и молярных процессах позволяет уточнить природу критерия, что весьма важно для правильной ориентации в этих новых и весьма сложных явлениях.  [c.436]

Основной особенностью турбулентного потока по сравнению с ламинарным является молярный перенос количества движения и теплоты при ламинарном движении происходит молекулярный перенос. Турбулентный моль — носитель количества движения и теплоты — обеспечивает существенно больщую интенсивность переноса, чем молекула. Именно поэтому турбулентные коэффициенты переноса намного больше молекулярных Хт>Я,, рт р (подробнее см. 52, пример 14.2).  [c.386]

С физической точки зрения теплоотдача конвекцией представляет двустадийный процесс, поскольку характер движения жидкости или газа у поверхности нагрева и в отдалении от нее принципиально различен. Как известно, движение у поверхности в пограничном слое толщиной 6 носит всегда ламинарный характер, тогда как в отдалении оно может быть ламинарным, но чаще всего турбулентным. Перенос тепла в пограничном ламинарном слое сводится к молекулярному диффузионному процессу— теплопроводности (> ) тогда как в потоке, движущемся турбулентно носит характер молярной тепловой диффузии, который, однако, тоже возможно характеризовать некоторым эквивалентным коэффициентом теплопроводности. Если весь поток движется ламинарно, то — = 1 и поэтому весь процесс теплообмена  [c.270]

В турбулентных потоках жидкостей и газов перенос тепла в значительной мере осуществляется неупорядоченным перемещением Или дрейфом отдельных возмущенных клочкообразных масс среды в потоке. Эти дрейфующие, сравнительно большие, массы среды в потоке удается рассматривать как множество отдельных молярных или турбулентных носителей энергии, которые, перемещаясь в различных направлениях пространства, способны переносить энергию. Диффузионный характер дрейфующих турбулентных масс в потоке позволяет применить для определения удельного потока турбулентного переноса энергии формулы, аналогичные молекулярному переносу тепла  [c.28]


Смотреть страницы где упоминается термин Молекулярные и молярные потоки переноса : [c.7]    [c.16]    [c.447]    [c.204]    [c.84]   
Смотреть главы в:

Тепломассообмен  -> Молекулярные и молярные потоки переноса



ПОИСК



Молекулярный вес

Молярность

Перенос молекулярного потока

Перенос молекулярный

Переносье

Ток переноса



© 2025 Mash-xxl.info Реклама на сайте