Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние градиента давления на переход течения в пограничном слое из ламинарной формы в турбулентную

Тонкие тела. Установлено, что градиент давления вдоль стенки оказывает очень сильное влияние на положение точки перехода ламинарной формы течения в турбулентную в пограничном слое. В области падения давления (ускоренное течение) пограничный слой остается в общем случае ламинарным, в то вр емя как в области даже с незначительным повышением. . давления обычно сразу происходит переход ламинарного течения в турбулентное. Это обстоятельство позволяет существенно уменьшить сопротив-  [c.420]


Предварительные замечания. Результаты, изложенные в главе XVI,. в принципе доказали пригодность теории устойчивости, основанной на методе-малых колебаний, для исследования перехода ламинарного течения в турбулентное. Это дает основание ожидать, что при помощи этой теории можно выяснить, какие другие параметры, кроме рассматривавшегося до сих пор числа Рейнольдса, существенно влияют на переход ламинарного течения в турбулентное. В 2 главы XVI уже было коротко сказано, что градиент давления внешнего течения оказывает очень большое влияние на устойчивость пограничного слоя, а тем самым и на переход течения в пограничном слое на обтекаемом теле из ламинарной формы в турбулентную. А именно, падение давления стабилизует пограничный слой, а повышение давления, наоборот, понижает устойчивость пограничного слоя.  [c.450]

Влияние градиента давления на переход течения в пограничном слое из ламинарной формы в турбулентную  [c.450]

Рэйли вывел этот критерий, т. е. роль точки перегиба, только как необходимое условие для возникновения неустойчивых колебаний. Впоследствии В. Толмин 1 ] доказал, что этот критерий дает также достаточное условие для существования нарастающих колебаний. Этот критерий имеет фундаментальное значение для всей теории устойчивости, так как он — до внесения поправки на влияние вязкости — дает первую грубую классификацию всех ламинарных течений с точки зрения их устойчивости. Практически весьма важно следующее обстоятельство существование точки перегиба у профиля скоростей непосредственно связано с градиентом давления течения. При течении в суживающемся канале (рис. 5.14), когда имеет место падение давления в направлении течения, получается целиком выпуклый, заполненный профиль скоростей без точки перегиба. Наоборот, при течении в расширяющемся канале, когда имеет место повышение давления в направлении течения, получается урезанный профиль скоростей с точкой перегиба. Такая же разница в форме профиля скоростей наблюдается и в ламинарном пограничном слое на обтекаемом теле. Согласно теории пограничного слоя, профили скоростей в области падения давления не имеют точки перегиба наоборот, в области повышения давления они всегда имеют точку перегиба (см. 2 главы VII). Следовательно, точка перегиба профиля скоростей играет в вопросе об устойчивости пограничного слоя такую же роль, как и градиент давления внешнего течения. Для течения в пограничном слое это означает падение давления благоприятствует устойчивости течения, повышение же давления, наоборот, способствует неустойчивости. Отсюда следует, что при обтекании тела положение точки минимума давления оказывает решающее влияние на положение точки перехода ламинарного течения в турбулентное. В первом, грубом приближении можно считать, что положение точки минимума давления определяет положение точки перехода, а именно точка перехода лежит немного ниже по течению точки минимума давления.  [c.429]


Сильное влияние градиента давления на устойчивость и на нарастание малых возмущений, предсказанное теорией устойчивости, очень хорошо подтверждено экспериментально Г. Б. Шубауэром и Г. К. Скрэмстедом в их работе, упомянутой в 4 главы XVI. На рис. 17.1 изображена осциллограмма пульсаций скорости в пограничном слое на плоской стенке при наличии градиента давления. Верхняя половина рисунка показывает, что падение давления на 10% от динамического давления влечет за собой полное затухание пульсаций. Из нижней же половины рисунка видно, что последующее повышение давления всего на 5% приводит не только к сильному нарастанию колебаний, но и к быстрому переходу ламинарной формы течения в турбулентную (необходимо обратить внимание на то, что две последние строки осциллограммы изображены в уменьшенном масштабе по сравнению с остальными строками).  [c.452]

Ламинаризованные профили. Расчет устойчивости (см. рис. 17.7 и 17.8) весьма отчетливо показывает решающее влияние градиента давления на устойчивость и на переход ламинарной формы течения в турбулентную, а измерения полностью подтверждают это влияние. На использовании этого влияния основано конструирование ламинаризованных профилей, У таких профилей пограничный слой должен сохраняться ламинарным на возможно большем протяжении контура. Для достижения этого требования место профиля с наибольшей толщиной отодвигается возможно дальше назад тем самым отодвигается далеко назад и точка, соответствующая минимуму давления  [c.460]

Для всей механики жидкости и газа фундаментальное значение имеет явление перехода ламинарной формы течения в турбулентную. Впервые это явление было подробно исследовано О. Рейнольдсом в восьмидесятых годах прошлого столетия при изучении движения воды в трубах. В 1914 г. Л. Прандтлю удалось экспериментальным путем, на примере обтекания шара, показать, что течение внутри пограничного слоя также может быть либо ламинарным, либо турбулентным и что процесс отрыва потока, а вместе с тем и вся проблема сопротивления зависят от перехода течения внутри пограничного слоя из ламинарной формы в турбулентную. В основе теоретического исследования такого перехода лежит предположение О. Рейнольдса о неустойчивости ламинарного течения. В 1921 г. такими исследованиями занялся Л. Прандтль. В 1929 г. В. Толмину после ряда неудачных попыток удалось впервые теоретически вычислить критическое число Рейнольдса для плоской пластины, обтекаемой в продольном направлении. Однако потребовалось еще свыше десяти лет, прежде чем теория Толмина Morjfa быть подтверждена очень тщательными экспериментами X. Драйдена и его сотрудников. Теория устойчивости пограничного слоя позволила объяснить влияние на переход ламинарной формы течения в турбулентную также других факторов (градиента давления, отсасывания, числа Маха, теплопередачи). Эта теория получила важное пр-именение, в частности, при исследовании несущих профилей с очень малым сопротивлением (так называемых лами-наризованных профилей).  [c.17]

Шероховатость, распределенная по площади. Измерения перехода ламинарной формы течения в турбулентную, вызываемого шероховатостью, распределенной по площади, привели пока лишь к немногим результатам [ ]. В работе Э. Г. Файндта для песочной шероховатости исследуется зависимость перехода ламинарного несжимаемого течения в турбулентное от размера зерен песка и от градиента давления. Измерения были выполнены в суживающемся и расширяющемся каналах с поперечным сечением в виде круглого кольца. Шероховатость была создана только на стенке внутреннего цилиндра, внешняя же стенка была оставлена гладкой и своим наклоном вызывала градиент давления. Найденная из этих измерений связь между критическим числом Рейнольдса /lД пep/v составленным для положения точки перехода, и числом Рейнольдса Ьхк Ь, составленным для размера песчаного зерна, изображена на рис. 17.44 для различных градиентов давления. При гладких стенках для различных градиентов давления получились значения С/1д пер/ от 2-10 до 8-10 . Столь широкий диапазон изменения числа Рейнольдса для точки перехода вполне понятен, так как градиент давления оказывает сильное влияние на устойчивость и соответственно на неустойчивость пограничного слоя. При возрастании величины UikJv критическое чисЛо Рейнольдса сначала остается таким же, как  [c.491]



Смотреть главы в:

Теория пограничного слоя  -> Влияние градиента давления на переход течения в пограничном слое из ламинарной формы в турбулентную



ПОИСК



Влияние формы шва

Градиент

Градиент давления

Градиент давления, влияние на форму

Давление в пограничном слое

Давление влияние

Ламинарное и турбулентное течение

Ламинарное те—иве

Ламинарные пограничные слои

Переход к турбулентному пограничному слою

Переход к турбулентности

Переход ламинарного пограничного слоя

Переход ламинарного пограничного слоя в турбулентный

Переход ламинарного течения

Переход ламинарного течения турбулентное

Переход ламинарной формы течения в турбулентную

Переход, пограничный слой

Пограничный ламинарный и турбулентны

Пограничный переход

Пограничный слой ламинарный

Пограничный слой ламинарный турбулентный

Пограничный слой с градиентом давления

Пограничный слой турбулентный

Пограничный турбулентный

Слой ламинарный

Слой турбулентный

Течение в пограничном слое

Течение ламинарное

Течение турбулентное

Турбулентное течение в пограничном слое

Турбулентность (см. Пограничный

Турбулентные пограничные слои

Турбулентный пограничный слой с градиентом давления



© 2025 Mash-xxl.info Реклама на сайте