Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Радиальные колебания упругого шара

Как простейший пример колебаний упругого тела конечных размеров мы рассмотрим собственные радиальные колебания упругого шара. В этом случае каждая частица совершает радиальные перемещения. Поэтому мы можем принять следующие выражения для компонентов упругого перемещения  [c.433]

Радиальные колебания упругого шара  [c.720]

Определить частоты радиальных собственных колебаний упругого шара радиуса R.  [c.129]


Колебания упругого шара радиальные вынужденные 721  [c.861]

Определить радиальные собственные колебания упругого шара. Решение. Выбираем сферические координаты с началом в центре шара.  [c.755]

Частным случаем является такой, когда молекулы двухатомны, а атомы являются жесткими шарами, которые подобно шарам так называемой гимнастической гантели соединены с помощью соединительной штанги в жесткую систему I). Если считать сначала соединительную штангу упругой, то, конечно, нужно будет принять радиальные колебания атомов по отношению друг к другу. Но затем можно перейти к предельному случаю, когда деформируемость штанги стремится к нулю и, следовательно, амплитуда этих колебаний так мала, что, точно так же как и вращательное движение вокруг линии, соединяющей центры атомов, она за доступное для наблюдения время не приходит в тепловое равновесие с прочими движениями.  [c.512]

Для того чтобы иллюстрировать прямые методы решения общих уравнений, мы исследуем те типы деформации, которые в каждой точке состоят из чисто радиальных смещений. При этом очевидно, что концентрические до деформации сферы остаются концентрическими сферами и после деформации. Ясно, что деформация такого рода будет происходить в сферической оболочке, подверженной внутреннему давлению. Мы увидим, что наша теория включает в себя некоторые из форм нормальных колебаний ( 212) изотроп ного упругого шара,  [c.439]

ДЛЯ рассеивания энергии необходимо относительное перемещение отдельных частей тела в этом случае прецессия вызывает периодически ускоренное движение всех частиц космического аппарата, за исключением центра масс. Устанавливая маятниковый механизм,систему с демпфирующей пружиной и массой-наконечником или диск, имеющие отличные от космического аппарата прецессионные характеристики (рис. 27), можно получить в результате две раз- личные динамические системы, перемещающиеся относительно друг друга на демпфирование относительного движения расходуется нежелательный избыток энергии. Наиболее распространенным демпфирующим устройством маятникого типа является расположенная по внешней стороне спутника изогнутая труба с движущимся внутри шаром собственная частота колебаний шара в трубе будет пропорциональна угловой скорости спутника, а вся система будет настроена на условия оптимального рассеивания энергии в широком диапазоне угловых скоростей спутника. Рассеивание энергии происходит за счет ударов, трения или гистерезиса. Иногда в подобном устройстве вместо шара используют ртуть—элемент с упругими и инерционными свойствами. Аналогичного эффекта можно добиться с помощью маятника, если подвеску его инерционной массы выполнить из упругого материала или поместить массу в вязкую среду [4, 9]. Маятник иногда располагают вдоль оси вращения на некотором расстоянии от центра масс с тем, чтобы усилить относительные перемещения, создаваемые прецессионными колебаниями (по сравнению с вариантом, когда тот же самый маятник располагается радиально от центра масс). Для демпфирования можно использовать также диск, помещенный в вязкую среду, поскольку отношения моментов инерции относительно соответствующих осей диска и космического аппарата различны. Аналогичную задачу мог бы выполнить элемент, установленный внутри спутника и вращающийся во много раз быстрее, чем сам спутник (такой элемент можно отнести к гироскопам). В принципе этот метод не отличается от предыдущих в том смысле, что он так-же основан на различии динамических характеристик указанного устройства и космического аппарата и на различии в частотах прецессии. Возникающее при этом относительное перемещение можно ограничить с помощью вязкой среды.  [c.224]


Первым шагом на пути к построению реалистической модели Земли является модель сферы, выполненная локально-изотропным твердым веществом, у которого параметры 1хир зависят только от радиуса. Годографы- волн Р и 8 дают информацию о глу ких частях Земли, а длиннопериогдные-поверхностные волны лозволяют определить мощность коры и скорость волн в верхней мантии. Прогресс в методах измерения, достигнутый в последние 15 лет, обеспечил измерение основных мод собственных колебаний Земли, вызванных мощными землетрясениями, частоты которых определяются изучаемой упругой моделью. Вторым шагом к реалистической модели Земли является введение поглощения лри рассмотрении упругих констант как комплексных величин. Определение соответствующих параметров по затуханию волн Р и 5 связано со многими ограничениями, поскольку на амплитуду объемных волн сильно влияют рассеивание и локальные условия вблизи каждого сейсмографа. Затухание поверхностных волн более доступно прямому измерению, особенно тех волн, которые несколько раз обогнули земной шар. Ослабление ревербераций, следующих за большим землетрясением при надлежаш ей фильтраций, можно рассматривать как затухание отдельных резонаторов. Перечислен-яые источники информации позволили вывести зависимость параметров поглощения от радиального расстояния. Поскольку наличие поглощения обусловливает дисперсию скорости, следующий шаг состоит в изучении частотной зависимости упругих констант. Хотя радиальная модель Земли в общем и соответствует имеющимся наблюдениям, веш ество Земли лаТврально неоднородно, сама Земля не является сферой и вращение Земли имеет ряд резонансных пиков. В предположении, что модуль всестороннего сжатия чисто упругий (это означает отсутствие потерь энергии при сжатии). Qp=(4 3) (i /a) Qs, этого достаточно для определения величины 3 как функции радиуса. В грубом приближении равно 200 для верхней мантии, затем уменьшается до 100 на глубинах 100—200 км и затем медленно возрастает до 500 и более,  [c.133]


Смотреть главы в:

Теория упругости  -> Радиальные колебания упругого шара



ПОИСК



277, 317, 450, 621,—радиальные шара 449, 660,

Колебания упругие

Колебания упругого шара радиальные вынужденные

Колебания упругого шара радиальные вынужденные собственные

Колебания шара радиальные

Колебания шаров

Ок шара

Радиальные колебания

Шаров



© 2025 Mash-xxl.info Реклама на сайте