Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ускорения точек многозвенного механизма

Задание К-6. Определение скоростей и ускорений точек многозвенного механизма  [c.106]

Ускорения точек многозвенного механизма  [c.170]

Решаем задачу об ускорениях точек многозвенного механизма, используя аналитические методы ( 8.4, с. 183, 8.5, с. 188). Вычисляем вектор ускорения той точки механизма, в которой в данный момент находится подвижная точка М. Это ускорение является переносным для точки М.  [c.209]


Решаем задачу об ускорениях точек многозвенного механизма, используя уравнения трех угловых ускорений (уравнение (2), с. 184),  [c.212]

Последовательность построения планов скоростей и ускорений многозвенных механизмов. Планы скоростей и ускорений многозвенных механизмов строятся в последовательности присоединения структурных групп, причем используются лишь два типа уравнений (4.9) и (4.14) для точек, лежащих на одном звене, и (4.16) и (4.17) для совпадающих точек на звеньях, образующих поступательную пару.  [c.43]

Следовательно, кинематический анализ многозвенных плоских механизмов можно производить при помощи чисто геометрических операций — путем построения точек приведения и приведенных ускорений точек Ассура и шарнирных точек механизмов. Что касается приведенных ускорений, то при постоянной угловой скорости 0) ведущего звена они инвариантны по отношению к модулю 0) и могут быть построены по конфигурации механизма в данный момент времени.  [c.77]

Таким образом, представляя любой многозвенный механизм как систему последовательно и параллельно присоединенных элементарных групп, можно последовательным переходом от одной группы к другой, начиная от начального звена, определить скорости и ускорения всех точек звеньев.  [c.92]

Непосредственное вычисление положений звеньев и координат точек, скоростей и ускорений ведомых звеньев многозвенных механизмов по заданным положениям скорости и ускорения начального звена представляет собой значительные трудности, поэтому практически более удобно процесс расчета построить на основе структурного анализа механизма. Действительно, если многозвенный механизм разложен на элементарные группы Ассура и закон движения начального звена задан, то можно, очевидно, определить координаты точек первой присоединенной группы звеньев, их скорости и ускорения, в том числе и точек, сведения о законе движения которых  [c.134]

Аналитический метод кинематического исследования механизмов используется в тех случаях, когда требуется высокая точность определения перемещений, скоростей и ускорений точек механизма. Аналитический метод чаще применяется для простых механизмов, так как при исследовании многозвенных механизмов аналитические уравнения получаются очень сложными и решение их требует большой затраты времени. Однако при использовании вычислительных машин принципиально любая задача кинематического исследования механизмов может быть решена. Рассмотрим аналитический метод на примере двух механизмов. (Другие примеры см. в гл. 14, 2).  [c.57]


При синтезе механизмов передаточные функции, как и функции положения, задаются для обеспечения требуемых кинематических характеристик. Задача синтеза решается точными или приближенными методами. Точные методы применяются к малозвенным механизмам, имеющим простую структурную схему. Для сложных схем усложняются передаточные функции и функции положения, увеличивается число параметров синтеза. К тому же при синтезе многозвенных механизмов обычно удовлетворяют не только кинематические требования к механизму, но и часто требования к его динамике. В этих условиях более удобными оказываются приближенные методы кинематического синтеза. Кроме того, во многих случаях методы приближенного кинематического синтеза более приемлемы, так как истинные кинематические характеристики все равно отличаются от расчетных, полученных точным методом. Это объясняется тем, что в реальных механизмах из-за погрешностей изготовления и упругости звеньев всегда имеются зазоры между элементами кинематических пар, неточности в линейных размерах звеньев, вследствие чего траектории точек, скорости и ускорения звеньев неизбежно отличаются от расчетных. Если для сложных задач синтеза использовать приближенные методы, то при обеспечении допустимых пределов отклонения от заданных параметров затраты на расчет окажутся значительно меньшими, чем при использовании точных методов.  [c.60]

Что касается учета инерции главного звена машины, то здесь инерция его массы была учтена точно через изменение кинетической энергии самого звена под действием приведенных сил. Поскольку основной массой в механизме является масса главного звена (маховик, кривошип и главный вал), то пренебрежение силами инерции звеньев механизма, соответствующими угловому ускорению главного звена, сравнительно невелико, особенно учитывая, что при тяжелых маховиках и невелико. Поэтому для тяжелых маховиков результат расчета по вышеизложенному методу касательных усилий получается весьма точным и полностью удовлетворяющим требованиям практики. Однако в машинах с легкими маховиками, в состав которых входят многозвенные шарнирные механизмы и к которым относятся многие производственные машины, указанный метод расчета дает решение, весьма отличающееся от истинного, а потому в таких случаях прибегают к решению всей задачи на основе принципиально точного метода, а именно, метода приведенных масс и работ, предложенного в 1905 г., как было упомянуто, проф. Вит-тенбауэром.  [c.225]


Смотреть главы в:

Теоретическая механика  -> Ускорения точек многозвенного механизма



ПОИСК



Задание К-6. Определение скоростей и ускорений точек многозвенного механизма

Механизм многозвенный

Ускорение точки



© 2025 Mash-xxl.info Реклама на сайте