Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основная задача динамики для системы с идеальными связями

Основная задача динамики для системы с идеальными связями  [c.137]

Система (5.6) представляет собой систему ЗЛ/ + й скалярных уравнений, содержащих 6Л/ неизвестных функций — проекций векторов г ( ) и Кг (О на координатные оси ( =1, 2,. .., М), причем наиболее интересным является случай, когда число связей к<ЗК, Действительно, если к = ЗК, то уравнения связей полностью определяют движение системы. С другой стороны, если к<ЗЫ, то рассматриваемая задача является определенной только в том случае, когда известны 6Л/ — ЗМ- -к)=ЗМ—к независимых соотношений между положениями точек и реакциями связей. Забегая вперед, скажем, что основная задача динамики несвободной системы является определенной для так называемых идеальных связей. Однако введение этого понятия требует знакомства с некоторыми свойствами связей.  [c.201]


I. Исторические замечания. Уравнения движения механических систем можно получать исходя из весьма различных положений, которые могут рассматриваться, как основные принципы механики. Эти принципы должны полностью характеризовать движение системы материальных точек и быть эквивалентными всей системе дифференциальных уравнений движения. Все законы механики системы материальных точек, на которую наложены идеальные связи, могут быть получены из принципа Даламбера — Лагранжа (общего уравнения динамики). Тем не менее представляет интерес преобразовать общее уравнение динамики так, чтобы получить новую форму, эквивалентную этому уравнению, но отличную от него по структуре. Новые формы либо допускают некоторые обобщения, выходящие за рамки чисто механических задач, либо дают возможность получить новые формы дифференциальных уравнений движения. С теоретической точки зрения новые формы в некоторых случаях позволяют обнаруживать некоторые общие свойства системы, которые не всегда очевидны в первоначальной формулировке принципа. Полученный новый принцип может быть принят за основной закон, и из него можно вывести все свойства движения, если только он правильно отображает природу.  [c.500]

Выше отмечалось, что основная задача механики голономных систем становится определенной для класса идеальных связей. Действительно, пусть на систему из N точек наложено к голономных идеальных связей. Число проекций виртуальных перемещений точек на координатные оси, или, иначе говоря, число вариаций координат точек, равно ЗЫ. Так как вариации координат подчинены уравнениям (5.12), то к вариаций являются зависимыми, а ЗК—к вариаций — независимыми. Зависимые вариации могут быть единственным образом выражены через независимые, поскольку детерминант из коэффициентов при зависимых вариациях в системе (5.12) по предположению отличен от нуля (в противном случае среди связей будут такие, которые являются следствием остальных). Учтем далее, что кроме требований голономности связей выполняется требование их идеальности (см. (5.13)). В этом условии к зависимых вариаций с помоиц>ю (5.12) можно выразить через ЗМ—к независимых вариаций. После такой подстановки (для того чтобы удовлетворить требованию идеальности) следует приравнять нулю коэффициенты при независимых вариациях. Тем самым можно получить ЗК—к соотношений между реакциями связей и радиусами-векторами точек. Таким образом, основная задача динамики несвободной системы с голономными идеальными связями является определенной, поскольку число уравнений и число неизвестных функций в этом случае совпадают.  [c.206]


Это провозглашение эры исключительного господства аналитического метода могло казаться тем более обоснованным, что в труде Лагранжа содержится и все, что к тому времени составляло механику сплошной среды. Подводя итоги, надо все же признать, что аналитическая механика Лагранжа — не вся механика его времени. Недостаточность для приложений динамики идеальной жидкости, ограничение идеальными связями, т. е. исключение сил трения, математические трудности — словом, все, отделявшее теоретические построения от технических применений, заставляло уже тогда искать новые физические схемы, приближенные методы, обращаться к эксперименту. Это относится прежде всего к механике сплошной среды (см. следующую главу). Но в механике Лагранжа не было и других важных компонентов. В ней отразились и слабые стороны механистического, недиалектического материализма XVIII в. Лагранж обходит вопросы, связанные с тем или другим толкованием таких общих понятий, как пространство и время. А заодно он совсем не касается вопроса о том, каковы те системы координат, которыми он пользуется он ничего не говорит об относительности движения. Он обрывает в этом пункте традиции классической механики. Исходя из уравнений и не вникая в анализ физических основ механики, Лагранж как бы провел некую линию уровня . Все, лежащее выше нее, можно было считать прочно установленным и рекомендовать к применению то, что находилось ниже нее, игнорировалось. Это была новая позиция — позиция разумного самоограничения, но это исключало из рассмотрения ряд основных вопросов механики (и естествознания в целом). Исключить их на том основании, что пока нет удовлетворительного ответа на них и что они слишком близки к метафизике , было полезно можно было сосредоточить усилия на более конкретных задачах, поддающихся решению но это принесло и вред, так как отвлекало от более глубокого исследования основных понятий механики и физики, создавая иллюзию благополучия, которого на самом деле не было.  [c.157]


Смотреть главы в:

Теоретическая механика  -> Основная задача динамики для системы с идеальными связями



ПОИСК



Две основные задачи динамики

Динамика ее задачи

Динамика, основная задача

Задача основная

Задачи динамики

Основная задача динамики

Основные Динамика

Основные задачи

Связи идеальные

Система идеальная

Система основная

Система со связями

Системы Динамика



© 2025 Mash-xxl.info Реклама на сайте