Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Рассеивание энергии в вязкой жидкости

Рассеивание энергии в вязкой жидкости  [c.724]

Рис. 11.115. Поглотитель колебаний — жидкий маховик . Втулка 1 насаживается на вал, совершающий крутильные колебания. Маховик 2 насажен свободно на втулку 3. В зазор между кожухом 4, приваренным к втулке 1, и маховиком 2 заливается жидкость, мало изменяющая вязкость от температуры (жидкий препарат кремния). Относительное движение маховика вызывает рассеивание энергии колебаний. Вязкое трение обеспечивается нормированной величиной зазора между кожухом и маховиком, количеством и консистенцией рабочей жидкости. Наилучшее затухание имеет место, когда Рис. 11.115. <a href="/info/7750">Поглотитель колебаний</a> — жидкий маховик . Втулка 1 насаживается на вал, совершающий <a href="/info/19428">крутильные колебания</a>. Маховик 2 насажен свободно на втулку 3. В <a href="/info/448852">зазор между</a> кожухом 4, приваренным к втулке 1, и маховиком 2 заливается жидкость, мало изменяющая вязкость от температуры (жидкий препарат кремния). <a href="/info/7851">Относительное движение</a> маховика вызывает рассеивание <a href="/info/216542">энергии колебаний</a>. <a href="/info/10708">Вязкое трение</a> обеспечивается нормированной величиной <a href="/info/448852">зазора между</a> кожухом и маховиком, количеством и консистенцией <a href="/info/106149">рабочей жидкости</a>. Наилучшее затухание имеет место, когда

Для перемещения вязкой жидкости необходимо вводить в поток энергию, которая должна покрыть рассеивание энергии, т. е. мощность, которую можно определить, если в уравнение (4.38) вместо полных напоров подставить Щог- Р..от и  [c.57]

При движении жидкости или газа с высокой скоростью в потоке около поверхности из-за сил внутреннего трения наблюдается выделение теплоты. с то вносит некоторые особенности в протекание процесса теплообмена. Внутренний разогрев потока представляет собой необратимый процесс рассеивания части механической энергии движения вследствие вязкого трения и перехода этой энергии в теплоту. Процесс этот называют диссипацией энергии движения.  [c.286]

Активное гидравлическое сопротивление г, в основе которого лежат силы вязкого трения между слоями жидкости и жидкостью и стенками канала, отражает рассеивание энергии во внешнее пространство в виде тепла. В общем виде расчетная формула для определения г получается из уравнения Блазиуса [39] для ламинарного режима работы с учетом изменения конструктивных параметров проточной части, который разбивается на К участков длиной lj с постоянным поперечным сечением Sj произвольной формы  [c.70]

Основной недостаток схемы демпфирования колебаний спутника с помощью вязкой жидкости заключается в том, что для сравнительно быстрого рассеивания энергии требуется большое количество жидкости, так как оказывается, что в оптимальном случае демпфирования момент инерции жидкости должен быть сравним по величине с максимальным моментом инерции спутника. Эффективность этой схемы несколько повышается, если поместить жидкость в замкнутый тороидальный объем, расположенный вне спутника.  [c.117]

Кроме того, в рассеивании энергии примет участие не только работа внутренних сил вязкой жидкости, но и диссипация электромагнитного поля  [c.645]

Фильтрация характеризуется интенсивным рассеиванием энергии жидкости в потоке под влиянием вязкого трения. Учитывая незначительность размеров поровых каналов и скоростей фильтрации в реальном грунте, можно предполагать, что жидкость в них движется по закону ламинарного режима. Тогда потери напора вдоль потока должны быть пропорциональны скорости движения. Закон пропорциональности скорости фильтрации потерям напора впервые был установлен экспериментально при исследовании течения воды в песчаных фильтрах французским инженером А. Дарси (1856 г.) и носит название закона Дарси. Поскольку потери напора при фильтрации зависят от скорости линейно, то этот закон часто называют также линейным законом фильтрации.  [c.445]


Для того чтобы провести аналитическое обсуждение колебаний при лучшем соответствии действительным условиям, необходимо учесть влияние демпфирующих сил. Эти силы могут иметь различное происхождение трение между сухими поверхностями скольжения, трение между смазанными поверхностями, сопротивление воздуха или жидкости, электрическое демпфирование, внутреннее трение, обусловленное несовершенной упругостью материалов, и т. д. Среди всех упомянутых причин рассеивания энергии случай, в котором демпфирующая сила пропорциональна скорости (так называемое вязкое демпфирование), является простейшим с точки зрения математического исследования. Поэтому силы сопротивления, имеющие более сложную природу, обычно заменяют при исследованиях эквива-  [c.65]

Гидравлические гасители колебаний. Эти гасители устанавливают в центральном подвешивании тележек вагонов. Принцип их работы заключается в последовательном перемещении вязкой жидкости при помощи поршня через узкие (щелевые) каналы (дроссельные отверстия) и всасывании ее обратно через рабочий клапан одностороннего действия. При прохождении жидкости через каналы возникает вязкостное трение и в результате происходит превращение механической энергии колебательного движения вагона в тепловую, а затем ее рассеивание (диссипация).  [c.30]

Течение газа в канале связано с рассеиванием части энергии потока на преодоление сил трения. При движении вязких жидкостей, каковыми являются рабочие тела поршневых машин, имеют место значительные потери в пограничном слое и ядре потока. Поэтому при одинаковых движущих силах средняя скорость истечения идеальной жидкости Сцо, движущейся без потерь, будет выше средней скорости истечения вязкой жидкости  [c.26]

Если имеется рассеивание энергии и если только объемное расширение происходит не бесконечно медленно, а имеется некоторая конечная скорость расширения е , то это явление заключает в себе некоторый вид вязкости которую мы можем назвать объемной вязкостью. При этом не имеет значения, идет речь о жидкости или о твердом теле. Это находится в соответствии с первой аксиомой реологии, которая (другими словами) гласит, что при простом изменении объема или плотности любой материал ведет себя как твердое тело. Конечно, всегда можно принять, что для некоторого класса жидкостей t, равно нулю, и этот класс жидкостей следует назвать стоксовским, так как именно это предположение принял Стокс (1851 г.), когда выводил знаменитые дифференциальные уравнения течения вязкой жидкости Навье — Стокса, названные так в честь него и Навье (Navier, 1823 г.). До недавнего времени это предположение было общепринятым как удовлетворяюш ее реальным условиям, но Тисца (Tisza, 1942 г.) указал, что в реальных жидкостях должно быть довольно большим, а я указал на некоторые следствия обраш ения в нуль, которые не вполне согласуются с экспериментом и о которых более подробно будет сказано в главе XII.  [c.103]

Большое значение могут. иметь и термодинамические свойства содержимого каверны. Теплопроводность газа при схлопывании каверны влияет на повышение давления и температуры и усиление сонолюминесцендии (разд. 4.12). Она вызывает также демпфирование колебаний пузырька. В случае сжимаемой вязкой теплопроводной жидкости теплопроводность газа будет влиять на рассеивание акустических волн, вызывая поглощение их энергии. Этот вопрос был рассмотрен в работе [17]. В работе [40] было показано, что изменение поведения газа в колеблющемся пузырьке от изотермических до адиабатических условий зависит от удельных теплоемкостей и коэффициентов температуропроводности жидкости и газа.  [c.163]


Смотреть главы в:

Гидродинамика  -> Рассеивание энергии в вязкой жидкости



ПОИСК



Жидкость вязкая

Рассеивание

Энергия жидкостей



© 2025 Mash-xxl.info Реклама на сайте