Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ВИХРЕВЫЕ ДВИЖЕНИЯ ИДЕАЛЬНОЙ ЖИДКОСТИ Теорема Томсона

Теоремы Гельмгольца о вихревом движении основываются на теоремах Стокса и Томсона и устанавливают условия сохраняемости вихревого движения в идеальной жидкости.  [c.95]

ВИХРЕВЫЕ ДВИЖЕНИЯ ИДЕАЛЬНОЙ БАРОТРОПНОЙ ЖИДКОСТИ. ТЕОРЕМА ТОМСОНА И ЕЕ СЛЕДСТВИЯ -  [c.263]

В гл. 2 были описаны основные кинематические свойства вихревых движений и доказаны соответствующие теоремы. Теперь, располагая уравнениями динамики, можно установить динамические свойства вихрей. В основе их рассмотрения лежит теорема Томсона если идеальная жидкость движется под действием сил, обладающих однозначным потенциалом, и процесс баротропен, то циркуляция скорости по любому замкнутому жидкому контуру постоянна во времени. Напомним, что контур называют жидким, если во время движения он состоит из одних и тех же частиц.  [c.107]


Из теоремы Томсона вытекают свойства сохраняемости вихревых движений в идеальной баротропной жидкости. Действительно, пусть в начальный момент времени суммарная интенсивность вихревых трубок в некоторой части движущейся жидкости-имела значение J. В силу теоремы Стокса циркуляция Г по любому замкнутому контуру, охватывающему эти трубки, равна 2J. Так как по теореме Томсона dY/dt = О, то циркуляция, а значит, и интенсивность J не изменятся во все время движения. В частности, если в начальный момент движение было полностью безвихревым (всюду в области течения Г= О и У= 0), то оно останется безвихревым во все время движения. Иными словами, в идеальной баротропной жидкости вихревые движения не могут возникать или исчезать, если действующие на жидкость силы имеют однозначный потенциал .  [c.118]

Возвращаясь к возможности образования ненулевой циркуляции при обтекании твердого тела с острой задней кромкой при наличии в идеальной жидкости ( например, крыла ) поверхности разрыва, обратимся к рис. 89,а, где показано покоящееся тело и приведен ряд замкнутых жидких контуров, имеющих нулевую циркуляцию. Казалось, что и при безотрывном движении крыла циркуляция останется нулевой и движение будет безвихревым. Однако в этом случае имеет место сближение ранее разделенных жидких элементов верхних и нижних контуров ( рис. 89,6 ) вблизи задней острой кромки. Вдоль пунктирной линии касательная составляющая л скорости жидкости терпит разрыв и при сохранении сплошности жидкости без нарушения теоремы В.Томсона в ней возникает поверхностное распределение завихренности — вихревая пелена. Этому возможны возражения, состоящие в том, что обтекание с разрывом скорости не является единственно возможным. В идеальной жидкости допустимо перетекание жидких контуров за острую кромку с сохранением потенциальности поля скорости и отсутствием завихренности. Такое решение может иметь смысл с математической точки зрения. Однако оно приводит к бесконечному значению скорости и бесконечному отрицательному давлению на кромке. Данная ситуация не может существовать с физической точки зрения, поскольку жидкости не выдерживают отрицательных давлений — возникают кавитация и разрыв сплошности. Требование конечности скорости на задней кромке в  [c.224]

Легко видеть, что в соответствии с теоремой Томсона в идеальной жидкости вращательное вихревое движение частиц возникнуть или исчезнуть не может. Это и физи-  [c.22]


Развитие г1]дрогазодннамики в XIX в. связано с именами крупнейших ученых-физиков и математиков, разрабатывавших теорию движения идеальной (невязкой) жидкости, достигшую во второй половине столетия высокого совершенства благодаря работам Лагранжа, Коши, Кирхгофа, Ренкина, Стокса, Пуассона, И. С. Громеки, В. Томсона (Кельв1ша), Гельмгольца, Релея, Мавье и др. Важные теоремы о вихревом движении идеальной жидкости были сформулированы Стоксом, Томсоном, Гельмгольцем.  [c.10]

Из теоремы Томсона следует свойство сохраняемости вихревых движений в идеальной баротропной жидкости. Действительно, пусть в начальный момент времени суммарная интенсивность вихревых трубок в некоторой части движущейся жидкости имела значение У. В силу теоремы Стокса циркуляция Г по любому замкнутому контуру, охватывающему эти трубки, равна 2/. Так как по теореме Томсона dTldi = О, то циркуляция, а значит, и интенсивность J не изменяются во все время движения. В частности, если в начальный момент движение было полностью безвихревым (всюду в области течения Г = О и У = 0), то оно 108  [c.108]

Если Ц. с. равна кулю по любому контуру, проведённому внутри жидкости, то течение жидкости— звихре-вое, или потенциальное, и потенциал скоростей—однозначная ф-ция координат. Если же Ц. с. по нек-рым контурам отлична от нуля, то течение жидкости либо вихревое в соответственных областях, либо безвихревое, но с неоднозначным потенциалом скоростей (область течения многосвязная). В случае потенц. течения в многосвязной области Ц, с. по всем контурам, охватывающим одни и те же твёрдые границы, имеет одно и то же значение. Ц. с. широко используется как характеристика течений идеальной (без учёта вязкости) жидкости. По динамич. теореме Томсона (Кельвина) Ц. с. по замкнутому жидкому контуру остаётся постоянной во время движения, если, во-первых, жидкость является идеальной, во-вторых, давление (газа) жидкости зависит только от плотности, в-третьих, массовые силы потенциальны, а потенциал однозначен. Для вязкой жидкости Ц. с. со временем изменяется вследствие диффузии вихрей. При плоском циркуляц. обтеканий контура идеальной несжимаемой жидкостью, при к-ром скорость на бесконечности отлична от нуля, воздействие жидкости на контур определяется по Жуковского теореме и прямо пропорционально значению Ц. с.,  [c.441]

Если Ц. с. равна пулю по любому контуру, проведенному внутри жидкости, то течение жидкости — безвихревое, или потенциальное течение, и потенциал скоростей — однозначная ф-ция координат. Если же Ц. с, по нек-рым контурам отлична от нуля, то течение жидкости — либо вихревое в соответственных областях, либо безвихревое, но с неоднозначным потенциалом скоростей (область течения многосвязная). В случае потенциального течения в многосвязной области Д. с. по всем контурам, охватывающим одни и те же твердые границы, имеет одно и то же значение. Д, с, широко иснользуется как характеристика течений идеальной (без учета вязкости) жидкости. По динамич. теореме Томсона (Кельвина) Д. с, по замкнутому жидкому контуру остается постоянной во все время движения, если 1) жидкость является идеальной, 2) давление (газа) жидкости зависит только от плотности и 3) массовые силы — потенциальны, а нотенциал однозначен. Для вязкой жидкости Д. с. со временем изменяется вследствие диффузии вихрей. При плоском циркуляционном обтекании контура идеальной несжимаемой жидкостью, при к-ром скорость на бесконечности отлична от нуля, воздействие жидкости на контур определяется но Жуковского теореме и прямо пропорционально значению Ц. с., плотности жидкости и значению скорости потока на бесконечности. При плоском обтекании идеальной жидкостью крыла с острой задней кромкой величипа Д. с. определяется Чаплыгина — Жуковского постулатом. При обтекании крыла конечного размаха, хорда к-рого в плане меняется, Д. с. вдоль размаха крыла также меняется.  [c.401]



Смотреть страницы где упоминается термин ВИХРЕВЫЕ ДВИЖЕНИЯ ИДЕАЛЬНОЙ ЖИДКОСТИ Теорема Томсона : [c.288]    [c.41]   
Смотреть главы в:

Лекции по гидроаэромеханике  -> ВИХРЕВЫЕ ДВИЖЕНИЯ ИДЕАЛЬНОЙ ЖИДКОСТИ Теорема Томсона



ПОИСК



Вихревое движение

Вихревые движения идеальной баротропной жидкости Теорема Томсона и ее следствия

Вихревые усы

Движение Движение вихревое

Движение жидкости вихревое

Жидкость идеальная

Идеальной жидкости движение

Идеальный газ в движении

Теорема вихревое

Теорема движения

Томсон

Томсона теорема

Томсона теорема для движения жидкости



© 2025 Mash-xxl.info Реклама на сайте