Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Иридий Коррозионная стойкость

В качестве коррозионно-стойких металлических покрытий используются даже такие дорогостоящие и экзотические, как покрытия сплавами платина-иридий, золото-платина, а также золотом, платиной, родием. Однако и такие покрытия не всегда проявляют достаточную коррозионную стойкость при высоких температурах и давлениях. Отмечаются, в частности, коррозия платиновых покрытий в 0,1 М растворе хлористо-водородной кислоты при 150 °С и коррозия платины и сплава золото-платина в воде при 315 °С и в паре  [c.151]


Коррозионная стойкость металлов в атмосфере, равно как и в других коррозионных средах, нередко определяется их термодинамической стабильностью [17]. К металлам высокой термодинамической стабильности, которые не корродируют в большинстве природных сред, относятся металлы платиновой группы (рутений, осмий, родий, иридий, палладий, платина), золото и до некоторой степени — серебро. Большинство этих металлов используют главным образом в ювелирной промышленности или в качестве покрытий специального назначения.  [c.89]

Рений — светло-серый блестящий металл, годами сохраняющий первоначальный вид. Рений — второй (после вольфрама) по тугоплавкости металл и третий (после осмия и иридия) по величине модуля упругости, поэтому ои применяется в пружинных точных сплавах. Практически нерастворим в соляной, плавиковой и серной кислотах. Рений выпускается в виде порошка, штабиков, монокристаллов (с чистотой 99,999%), проволоки, фольги и сплавов с вольфрамом, молибденом, никелем, обладающих наивысшей прочностью при высоких температурах и коррозионной стойкостью.  [c.188]

Соляная кислота при обычной температуре почти не действует на платину и палладий. Сплавы платины с иридием и рутением обладают значительно большей коррозионной стойкостью в кислоте в присутствии окислителей, чем платина.  [c.103]

Из-за высокой коррозионной стойкости, хорошей теплопроводности и пластичности ниобий, цирконий и, особенно, тантал и их сплавы являются ценнейшим конструкционным материалом для химического машино- и приборостроения. Из этих металлов изготовляют теплообменники, нагреватели, реакторы, мешалки, клапаны, вентили, адсорберы, трубопроводы, фильтры и т. п. Тантал, ниобий и их сплавы с никелем, вольфрамом и рением часто используют в качестве заменителей платины, золота и иридия (эталонные разновесы, чашки эталонных весов и т. д.).  [c.174]

Присадка иридия не повышает сопротивление хрома окислению в токе воздуха при 980° [16]. По данным [17] сплав с 0,5% 1г обладает значительно более высокой коррозионной стойкостью в кипящих серной и соляной кислотах и значительно меньшей стойкостью в кипящей азотной кислоте, чем хром. Потери хрома и сплава с 0,5% 1г в этих средах приведены в табл. 266 Длительность испытания — от 40 до 180 часов.  [c.634]

Коррозионную стойкость сплавов иридия с цирконием изучали в работах [12, 16, 19]. Согласно [12] в парах воды при 1250° проволоки из иридия и сплава с 0,1% 2г обнаружили одинаковую степень окисления после выдержки в течение 120 часов.  [c.638]

По данным [16] присадка небольщих количеств иридия повышает коррозионную стойкость литого циркония.  [c.638]


Чистая платина — мягкий, пластичный и легко обрабатываемый металл. Механические свойства сильно зависят от степени холодной деформации материала и наличия в нем небольших примесей или легирующих элементов. На практике часто применяют сплавы платины с другими металлами платиновой группы. Температуры плавления сплавов платины с родием, иридием, осмием н рутением выше, а с палладием — ниже, чем у чистой платины. В большинстве случаев легирование повышает прочность, жесткость, твердость и коррозионную стойкость, Введение неблагородных металлов может, однако, приводить к охрупчиванию и разрушению платины и ее сплавов, даже если содержание этих элементов очень мало.  [c.216]

Палладий в сравнении с платиной, родием и иридием обладает значительно меньшей стойкостью к химическому воздействию. Теоретическая коррозионная диаграмма палладия (рис. 4,5) показывает, что в-отсутствие сильных окислителей и комплексообразующих веществ металл должен быть устойчив в водных растворах с любыми pH. И действительно, на практике палладий не корродирует в хлорной воде (если ее температура невысока) и не тускнеет во влажном воздухе. При обычных температурах на палладий не действуют такие кислоты, как уксусная, щавелевая,, плавиковая и серная, однако сильные окислительные кислоты, например смесь соляной кислоты с азотной, быстро разрушают палладий. Разбавленная азотная кислота вызывает медленную коррозию, но в концентрированной кислоте металл корродирует быстро. Сплавы палладия с платиной в значительной степени сохраняют коррозионную стойкость платины, В обычных атмосферах палладий не тускнеет, но в промышленных атмосферах, содержащих двуокись серы, может наблюдаться некоторое потускнение, связанное с образованием сульфидной пленки. Щелочные растворы, даже при наличии в них окислителей, никакого влияния иа палладий не оказывают Это может быть связано с образованием тонкой пассивной пленки окиси палладия Р(50 [более устойчивой, чем Р(5(0Н)г], препятствующей дальнейшей коррозии.  [c.220]

Родий и иридий примерно так же стойки к анодной коррозии, как и платина, но они более стойки к воздействию переменных токов. В растворах хлоридов платиноиридиевые покрытия на титановых анодах показали более высокую коррозионную стойкость при малых перенапряжениях чем покрытия из чистого титана, и поэтому первые предпочтительнее использовать при производстве хлора из солевого раствора [24].  [c.224]

Все благородные металлы (серебро, золото, платина, иридий и другие металлы платиновой группы) имеют весьма положительные стандартные электродные потенциалы, что обусловливает их высокую коррозионную стойкость в большинстве агрессивных сред.  [c.74]

Коррозионная стойкость иридия  [c.371]

Коррозионная стойкость металлов, которые принято называть благородными (золото, серебро, илатипа, палладий, иридий II др.) определяется в основном их тер.модинамической устойчивостью во многих весьма агрессивных средах и в меньшей степени другими факторами—пассивностью, большим перснанряжепием водорода и др.  [c.274]

Высокая коррозионная стойкость в концентрированных кисло1ах и иеокис ляемость при нагревании на воздухе позволяют применять благородные металлы в самых жестких условиях работы. Наиболее коррозионностойкими в кислотах являются иридий, рутении, платина и золото. Палладий и серебро дозольнс легко реагируют с кислотами. В табл. 12 приведены сравнительные данные по коррозионной стойкости благородных металлов. При нагревании на воздухе платина, золото и серебро практически не окисляются. Сравнительно легко окис ляются осмий, рутений и иридий (табл. 13). Эти металлы образуют стойкие окислы, обладающие высокой упругостью паров, поэтому при высоких температурах наблюдается их испарение.  [c.404]

Л аксимальный предел прочности получают для сплавов с 1о—25% 1г старением закаленных и холоднокатаных сплавов при 750-С в течение 30 мин. Обрабатываемость сплавов падает с увеличением содержания 1г. Сплавы, закаленные с 1000—1200° С, обладают большей пластичностью, чем отожженные. При прокатке и волочении для полного снятия наклепа необходим отжиг до 1400" С Практически применяют отжиг при ПОО—1200"С в течение 30—45 мин. Сплавы Pt с 1г обладают высокой коррозионной стойкостью, которая быстро возрастает с увеличением содержания 1г. При нагревании на воздухе вьнпе 900° С сплавн теряют в весе по причине окисления иридия и испарения окислов.  [c.411]


Из всех сплавов благородных металлов сплавы платины с иридием обладают наибольшей коррозионной стойкостью даже по отношению к хлору и царской водке и обладают больнюй прочностью и упругостью. Поэтому они широко применимы для самых ответственных электрических контактов в магнето, роле, термостатах и для запальных свечей авиационных моторов. Обычно применяют сплав с 25% 1г, доволыю легко обрабатываемый и самый надежный для электрических контактов. Сплав с 10% 1г применяют для электродов в электрохимических процессах.  [c.411]

Палладий — иридий. Иридий значительно повышает твердость и механическую прочность сплавов, удельное электрическое сопротивление, понижает температурный коэффициент электрического сопротивления. Коррозионная стойкость сплавов выше, чем у чистого палладия. Сплавы, содержащие более 20 % 1г, очень тяжело обрабатываются, поэтому их в качестве контактных материалов не применяют. Известны контактные сплавы, содержащие 10 и 18% 1г. Они являются заменителями платино-иридиевых сплавов, содержащих 10 и 20 % 1г. По сравнению с последними такие сплавы менее тугоплавки, но имеют практически одинаковое удельное электрическое сопротивление и твердость, Палладиево-иридиевые сплавы дешевле платиново-ириди-  [c.300]

Сплавы на основе титана, изготовляемые промышленностью обладают высокими механическими свойствами по сравнению с нелегированным титаном, но в ряде случаев имеют пониженнз ю коррозионную стойкость. Проблеме создания коррозионностойких сплавов на основе титана уделяется большое внимание. Установлено, что подходящим легированием можно повышать химическую стойкость титана. Нарщено, в частности, что легирование титана молибденом, танталом, цирконием, медью, палладием, платиной, иридием и др. повышает его коррозионную стойкость [1—5].  [c.173]

К элементам первой группы относятся благородные металлы с низким перенапряжением водорода платина, палладий, а также, как показали опыты Стерна и Виссенберга, рутений, родий, иридий, ссмий [5]. К элементам второй грешны относится молибден, а также, вероятно, вольфрам, кроме того, к этой группе можно отнести и никель, который, как было показано в [4], повышает коррозионную стойкость титана. К третьей группе люжно отнести 144  [c.184]

Благородные металлы отличаются высокой стойкостью против действия кислот, щелочей, солей и газов. Благодаря этому они являются очень ценными материалами для химической промыщ-ленности, где находят разнообразное применение. Кроме того, они применяются в ювелирной промышленности, в зубоврачебной технике и в электротехнике. Если расположить эти металлы в порядке понижения относительной коррозионной стойкости, измеренной по степени коррозии в кислотах, щелочах и окислителях, получим следующий ряд иридий, рутений, родий, осмий, золото, платина, палладий [1].  [c.484]

Коррозионная стойкость хроматных покрытий Иридит на различных металлах  [c.656]

К благородным относятся металлы с высокой коррозионной стойкостью, как, например, золото, платина, палладий, серебро, иридий, родий, рутений и осмий. Это металлы с красивым блестящим цветом, качество которых улучшается в сплаве, поэтому их используют в виде сплавов в электротехнике, электровакуумной технике, химическом аппаратостроении, приборостроении, медицине, кинофотопромышленности, ювелирном деле, а также применяют для антикоррозионной защиты изделий.  [c.35]

Присадка иридия повышает коррозионную стойкость палладия [20]. При нагреве на воздухе или в кислороде до 900—1000° на сплавах иридия с палладием образуются защитные окисные пленки и внутре1П1ее окисление не  [c.583]

Коррозионная стойкость в атмосферах условиях. Сплавы иридия с платиной обладают высокой коррозионной стойкостью в обычных атмосферных условиях, а также при нагревании до относительно высоких температур. Так, согласно [46] сплав с 9,88% 1г в результате 6-часового нагрева в печи электросопротивления на воздухе начинает окисляться с образованием тонкой окисной пленки IrOj только при 500°. По данным [47] эта пленка, образующаяся при нагреве сплавов на воздухе или в кислороде до 900—1000°,  [c.592]

Совершенствование технологии платинирования титана привело к расширению круга применяемых материалов, и в некоторых случаях платина была заменена другими видами коррозиониостойких проводящих покрытий, такими как платина — иридий нли окись рутения. Кроме коррозионной стойкости, эти поверхности характеризуются способностью функционировать прн меиьших перенапряжениях, чем платиновые илн графитовые покрытия. Испытание новых покрытий в ряде электрохимических ячеек, используемых для производства хлора и хлората натрия, продемонстрировало их значительное превосходство над графитовыми, и в настоящее время уже действуют первые промышленные установки с подобными анодами.  [c.198]

Палладий может ианоснться на защищаемый металл тем же путем, однако он не используется так широко в таком виде, поскольку его коррозионная стойкость ниже коррозионной стойкости платины. Применению других металлов платиновой группы, т. е. родия, рутения и иридия, как защитных покрытий препятствуют трудности  [c.452]

Положение металла в периодической системе элементов Д. И. Менделеева не характеризует в общем виде стойкость металлов против коррозии главным образом потому, что она зависит не только от природы металла, но и от внешних факторов коррозии. Однако некоторую закономерность и периодичность в повторении коррозионных характеристик металлов наряду с их химическими свойствами в периодической системе установить можно. Так, наименее коррозионно стойкие металлы находятся в левых подгруппах I группы (литий, натрий, калий, рубидий, цезий) и И группы (бериллий, магний, кальций, строиций, барий) наиболее легко пассивирующиеся металлы находятся в основном в четных рядах больших периодов в группах V (ванадий, ниобий, тантал), VI (хром, молибден, вольфрам, уран) и VIII (железо, рутений, осмий, кобальт, родий, иридий, никель, пал-  [c.37]



Смотреть страницы где упоминается термин Иридий Коррозионная стойкость : [c.1229]    [c.577]    [c.163]    [c.372]    [c.1239]    [c.587]   
Материалы в машиностроении Выбор и применение Том 1 (1967) -- [ c.282 ]



ПОИСК



Иридий

Стойкость коррозионная



© 2025 Mash-xxl.info Реклама на сайте