Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сплавы платина—иридий

В качестве коррозионно-стойких металлических покрытий используются даже такие дорогостоящие и экзотические, как покрытия сплавами платина-иридий, золото-платина, а также золотом, платиной, родием. Однако и такие покрытия не всегда проявляют достаточную коррозионную стойкость при высоких температурах и давлениях. Отмечаются, в частности, коррозия платиновых покрытий в 0,1 М растворе хлористо-водородной кислоты при 150 °С и коррозия платины и сплава золото-платина в воде при 315 °С и в паре  [c.151]


Платина Золото Иридий Палладий Серебро Вольфрам Медь Графит Сплавы Платина-иридий То же Золото-платина Палладий — серебро Палладий — серебро Палладий-иридий Серебро — платина Серебро-медь То же  [c.868]

Сплавы платина—иридий. Иридий сплавляется с платиной в любых пропорциях. Сплавы, содержащие менее 40% 1г, обрабатываются гораздо хуже, чем чистая платина. При температурах ниже 500° С сплавы платина — иридий обладают более высокой стойкостью к ползучести, чем платинородиевые сплавы. Платиноиридиевые сплавы, однако, гораздо менее устойчивы при высоких температурах, что объясняется сравнительно быстрой возгонкой летучих окислов иридия.  [c.217]

За единицу массы в Международной системе принята масса специального эталона, изготовленного из сплава платины и иридия. Масса этого эталона называется килограммом (кг).  [c.17]

Эти два примера показывают, что введенные первоначально только из соображений практического удобства эталоны метра и секунды по мере повышения требований к точности оказались чрезвычайно уязвимыми, что привело к необходимости разработки новых атомных стандартов длины и времени. К сожалению, до сих пор значительно хуже обстоят дела при определении единицы массы. Это единственная основная единица, прототип которой был выбран абсолютно произвольно. Эталон 1 кг массы представляет собой находящийся в Международном бюро мер и весов в Севре под Парижем цилиндр из сплава платины (90%) и иридия (10%) диаметром около 39 мм и такой же высоты. Отдельные страны располагают копиями такого эталона, причем относите ная точность воспроизведения копий составляет около 2,5 10 . Точность определения атомных масс пока ниже, что и обусловливает отсутствие атомного стандарта массы.  [c.29]

Вследствие малой твердости платина редко применяется для контактов в чистом виде, но служит основой для ряда контактных сплавов. Сплавы платины с иридием стойки к окислению и к износу, имеют высокую твердость и допускают большую частоту выключений, однако дороги и применяются только для особо ответственных деталей. Платина в виде проволоки и фольги применяется также в электропечах, нагреватели из платины могут работать в обычной окислительной атмосфере при температуре до 1400°С. Платиновые нити накаливания используются в качестве чувствительного элемента в термохимических газоанализаторах, где платина играет также роль катализатора.  [c.32]

К благородным металлам относятся платина, палладий, родий, иридий, рутений и осмий, а также золото и серебро. Они встречаются в природе в самородном состоянии. Наиболее важными в технике являются платина и ее сплавы с иридием. Палладий не находит себе должного применения. Замена платины и ее сплавов с иридием сплавами палладия, рутения, серебра и даже родия удешевляет изготовление приборов. Однако палладий по химическим свойствам и температуре плавления существенно отличается от платины и поэтому не все --да служит ее полноценным заменителем.  [c.394]


Платина — иридий. Сплавы платины с иридием образуют непрерывный ряд твердых растворов (фиг. 20).  [c.411]

Платина — металл, практически не соединяющийся с кислородом и весьма стойкий к химическим реагентам. Платина прекрасно поддается механической обработке, вытягивается в очень тонкие нити и ленты. Значение Ор платины после отжига около 150 МПа, а ми составляет 30—35 %. Платину применяют, в частности, для изготовления термопар для измерения высоких температур — до 1600 °С (в паре со сплавом платинородий, см. рис. 7-27). Особо тонкие нити из платины (диаметром около 1 мкм) для подвесок подвижных систем в электрометрах и других чувствительных приборах получают многократным волочением биметаллической проволоки платина — серебро с последующим растворением наружного слоя серебра в азотной кислоте (на платину азотная кислота не действует). Вследствие малой твердости платина редко применяется для контактов в чистом виде, но служит основой для контактных сплавов. Сплавы платины с иридием сгонки к окислению и к износу, и eют  [c.215]

Для выявления структуры родия, рутения, иридия и осмия или сплавов платины с высоким содержанием этих металлов реактив не пригоден.  [c.248]

С (сплавы платины с родием) и даже до 2000° С (иридий или его сплавы с родием). Нагреватели представляют собой проволоку диаметром 0,5—0,7 мм или ленту толщиной 10—30 мк. Наиболее желательная атмосфера для таких печей — воздух (окислительная атмосфера). В восстановительной среде возможны химические реакции материала нагревателя с продуктами восстановления керамики или примесями, содержащимися в керамике (в основном опасен кремний).  [c.279]

В качестве контактных материалов применяют сплавы платины с иридием, родием, никелем (образуют непрерывный ряд твердых растворов), рутением, осмием, молибденом, вольфрамом (образуют ограниченную область твердых растворов). Известен также тройной сплав платина — палладий — рутений (84—10—6). Сплавы серебро — платина рассмотрены ранее.  [c.301]

Платина — иридий. Для контактов применяют сплавы, содержащие 5—30 % 1г. Наибольшее применение они нашли для прецизионных контактов Иридий значительно повышает твердость и механическую прочность, ухудшая обрабатываемость платины. Сплавы, содержащие свыше 30 % 1г, обрабатываются с трудом. Сплавы с 7— 99 % 1г могут стареть (за счет распада твердого раствора при температуре ниже 1000 °С). Старение при 750 С значительно повышает твердость сплавов, содержащих 15—25 % 1г.  [c.301]

Для токов ниже 500 мкА следует применять сплавы с небольшими добавками неблагородных металлов (5—8%). Для прецизионных контактных сплавов с повышенными требованиями по надежности в этих же пределах ограничивается легирующая добавка серебра. Для контактов, коммутирующих токи до 20 мкА, могут быть использованы сплавы платины с добавками иридия, меди и никеля, а также сплавы палладия с 10 и 18 % 1г.  [c.312]

Платиновые припои обладают хорошей способностью смачивать металлы и высокой сопротивляемостью к окислению. В качестве припоев применяют сплавы платины с золотом, иридием, родием, медью, никелем и другими металлами.  [c.79]

До середины XX в. проводились неоднократные уточнения принятого эталона. Так, в 1889 г. был принят эталон в виде штриховой меры из сплава платины и иридия. Он представлял собой платиноиридиевый брусок длиной 102 см, имеющий в поперечном сечении форму буквы X, как бы вписанную в воображаемый квадрат, сторона которого равна 20 мм.  [c.36]

Эталон килограмма массы изготовлен из сплава платины (90 %) и иридия  [c.159]

В целях оптимизации свойств платиновых сплавов и сведения к минимуму отрицательного влияния какого-либо легирующего элемента используют принцип многокомпонентного легирования. Например, одновременное легирование платины палладием (до 25 %) и родием (до 20 %) снижает стоимость сплава, повышает его жаропрочность, сохраняет высокую температуру плавления. Микролегирование (до 0,1 %) такого сплава добавками иридия, рутения и золота еще более улучшает его эксплуатационные свойства.  [c.886]

В химической посуде наиболее часто применяют нелегированную и дисперсно-упрочненную платину, сплавы платины с родием, золотом и иридием. Недопустимо применение химической посуды из указанных сплавов для нагрева соединений, содержащих As, Sb, Р, S, Se, Те, Sn, Pb, Zn, Si, С.  [c.887]


Изготовление нового эталона единицы длины длилось с 1885 по 1886 г. Из специального сплава платины с иридием (Pt—90% и 1г—10%) было выплавлено в Лондоне 30 жезлов, на полированной внутренней нейтральной поверхности которых были нанесены штрихи в Парижской консерватории искусств и ремесел так, что расстояние между ними с возможной для того времени точностью воспроизводило длину архивного метра. Из 30 жезлов лучшим по качеству штрихов и по точности воспроизведения длины метра оказался жезл, носящий знак 6 . Именно этот метр и был избран в качестве нового международного эталона на I Генеральной конференции по мерам и весам, собравшейся в сентябре 1889 г. Международный прототип (первообраз) метра обозначался буквой ЗЯ и в течение 71 года хранился вместе с килограммом в Международном бюро мер и весов. Остальные метры-эталоны были распреде-  [c.5]

Для низких температур удобно применять рабочий резервуар из красной меди, обеспечивающий выравнивание температур во всем объеме газа для средних температур — стеклянные резервуары, для высоких температур — резервуары из сплавов платины и иридия или платины и родия, обеспечивающие хорошую газонепроницаемость до температуры 1100°С. Для высоких температур используются также резервуары из плавленого кварца.  [c.18]

Различают два типа термоанемометров тепловой анемометр сопротивления, в котором в поток газа или жидкости помещается тонкая нить из вольфрама или сплава платины с иридием, нагреваемая электрическим током и выполняющая функции термометра сопротивления (рис. 4-19, а), и термоэлектрический анемометр, в котором с помощью термопары определяется температура тонкой нагретой нити, изменяющаяся в зависимости от скорости воздушного потока (рис. 4-19,6). Достоинством первого типа анемометра является большая точность, второго — простота устройства.  [c.266]

Магний, кадмий, никель, марганец и другие цветные металлы в большинстве случаев применяются в сплавах с другими металлами. Применение благородных металлов — золота, серебра, платины, иридия, родия, палладия и других в промышленности ограничено.  [c.21]

Высокочастотный способ сверления основан на подаче к обрабатывающей ише диаметром 0,2 мм из сплава платина - иридий высокочастотного тока напряжением до 10 ООО В. Высокочастотные разряды отрывают частида от обрабатываемого алмаза и образуют в нем отверстие.  [c.599]

Теперь можно проследить за развитием международных соглашений по термометрии от их истоков. Термометрия с самого начала была включена в сферу деятельности МБМВ, однако в основном в связи с необходимостью измерять температуру и тепловое расширение новых метровых линеек из сплава платины с иридием. Было решено, что к каждому национальному прототипу метра должны прилагаться два ртутных термометра, градуированных в МБМВ. С этой целью по заказу МБМВ парижским мастером Тоннело была изготовлена серия термометров. Для обеспечения высокой стабильности термометры были выполнены из тугоплавкого стекла. Постоянство этих термометров превзошло ожидания и оказалось, что с их помощью можно измерять температуру с воспроизводимостью в несколько тысячных градуса. Были изготовлены термометры трех типов. Термометр типа а имел шкалу от 0 до 100 °С с делениями через 0,1 °С, нанесенными через 5 мм. Термометр типа б имел шкалу до 50 °С, затем следовало расширение капилляра, после чего шкала с делениями через 7 мм возобновлялась на интервале от 95 до 100 °С. Термометр типа в имел шкалу с делениями через 8 мм до 39 °С, после чего следовало расширение, затем короткий участок шкалы вблизи 66 °С, вновь расширение и, наконец, участок шкалы от 97 ДО-100 °С. Создание таких термометров и необходимость их  [c.38]

Килограмм — единица массы. Она равна массе международного прототипа килограмма, изготовленного из платино-иридие-вого сплава.  [c.89]

Из всех сплавов благородных металлов сплавы платины с иридием обладают наибольшей коррозионной стойкостью даже по отношению к хлору и царской водке и обладают больнюй прочностью и упругостью. Поэтому они широко применимы для самых ответственных электрических контактов в магнето, роле, термостатах и для запальных свечей авиационных моторов. Обычно применяют сплав с 25% 1г, доволыю легко обрабатываемый и самый надежный для электрических контактов. Сплав с 10% 1г применяют для электродов в электрохимических процессах.  [c.411]

Выявление структуры в расплавах солей используют для широкого травления сплавов платины с труднопротравливаемыми благородными металлами. Этот вид травления рекомендуют Берг-лунд и Майер [9], Д Анс и Лаке [4], Шоттки [13] и Ханке (М. Для сплавов платины, содержащих иридий и родий, Бек [25 ] рекомендует расплавленный хлористый натрий, который расплавляют в крытой платиновой посуде и переливают в одновременно сильно разогретый графитовый тигель. При этом выделяется хлор, выявляющий структуру. Графитовый тигель используют в качестве катода. При плотности тока 3 А/см , напряжении около  [c.250]

Рекомендованное Аткинсоном и Рапером [1 ] выявление структуры сплавов платины, содержащих 10—30% иридия, с применением нагрева в струе кислорода при 900—1000 С имеет аналогичный недостаток. Исключение составляет травление в расплавленном бихромате калия при температуре около 300° С. Этим способом структуру платины и ее сплавов выявляют за несколько секунд. Электролиз переменным током дает возможность выявлять структуру металлов группы платины и их сплавов при комнатной температуре. Поэтому он имеет по сравнению с горячими способами травления то преимущество, что позволяет изучить каждое структурное состояние, так как структура не изменяется.  [c.250]

Грамм-масса есть масса международного образца из сплава платины с иридием, который был принят обшей конференцией мер и весов, состоявшейся в Париже в 1889 г., и помещен в павильоне Breteuil в Севре, близ Парижа. Масса этого эталона очень мало отличается от массы одного кубического сантиметра дистиллированной воды при наибольшей плотности.  [c.132]


При температурах до 1600° С длительно можно применять термопару ПР-30/6 (сплав платины с 30% родия, в паре со сплавом платины с 6% родия), а до 1800° С — термопару ПР-20/100 (родий в паре со сплавом платины с 20% родия). При более высоких температурах можно применять иридийродиевую термопару ИрРд/Ир (сплав иридия с 50% родия в паре с иридием) или другие пары из иридиевых сплавов.  [c.281]

Термопары типа ТБ (или паллаплат —сплав платины с 10% родия в паре со сплавом палладия с 60% золота и 10% платины) и палладор (сплав платины с 20% родия и 10% иридия или платины с 15% иридия в паре со сплавом палладия с 60% золота) развивают очень большую термоэлектродвижущую силу и дают большую точность при измерении средних температур (500—1000° С) в окислителыюй атмосфере.  [c.281]

Тигли для плавки платины с помощью нагрева пламенем изготовляют из сухой обожженной извести под высоким давлением. Они состоят из верхней и нижней частей, соединяемых железным кожухом. Иижпяя часть имеет вогнутую форму и желобок для выпуска расплавленного металла верхняя часть также вогнутой формы имеет в центре отверстия для ввода горелки и выхода газов. Тигель необходимо предварительно нагренать для удаления из извести окклюдированных газон, чтобы не было сильного разбрызгивания металла. При плавке большого количества металла во избежание его загрязнения наконечник горелки следует делать из сплава платины с иридием.  [c.484]

Основными промышленными сплавами являются сплавы платины с медью, золотом, иридием, родием и рутением. В последнее время новы силось внимание к сплавам платины с кобальтом в связи с их сильпимп ферромагнитными свойствами. Палладий даст ценные сплавы с медью, золотом, иридием, серебром, а также с рутением и родием вместе. Свойства этих и других сплавов платиновых металлов описаны во многих сообщениях большое число подробных данных содержится в работах, указанных в заголовке этого раздела.  [c.495]

В электротехнике платина применяется главным образом в виде контактов. Отсутствие поверхиостной пленки обеспечивает низкое сопротивление контакта и надежность в работе даже после периодов простоя. Такие контакты находят применение в реле, сигнальных приборах и т. д. Если контакты должны работать в цепи высокого напряжения, их делают из сплавов с иридием (10 или 25%) или рутением (5 или 10%). Очень тонкая платиновая проволока применяется иногда для изготовления малогабаритных плавких предохранителей. Благодаря отсутствию коррозии сила тока существенно не н.зменяется при работе на уровне, близком к их максимальной характеристике.  [c.502]

Рений может найти применение в самых различных областях, однако из-за высокой стоимости и редкости в настоящее время этот металл не применяется в широком промышленном масштабе. По-вндимому, наиболее перспективно применение рения в электронике и в области измерения высоких температур (рений-вольфрамовые термопары, работающие при температурах выше 2000"). Другие возможные примеры применения реиия, основанные на его высокой температуре плавления, приведены в патенте фирмы Меллори энд компани [94]. Описан сплав, содержащий вольфрам, молибден и рений, из которого изготовляются электрические контакты. Сплавы платины и рения или платины и рения вместе с железом, родием и иридием, применяемые для термопар, описаны в английских патентах [16, 17]. Аналогичные сплавы описаны Гёдеке [31].  [c.632]

Трой и Стевен [57] также занимались изысканием термопар. Они для работы при высоких температурах исследовали несколько термопар из тугоплавких и редких металлов. Эта работа по существу явилась продолжением работы Шульце, который в 1938 г. [58] предложил следующие термопары платина —платина +8% рения (до 1600°) родий—платина+ +8% рения (до 1800°) родий — родий -t-8% рения (до 1900°) иридий — иридий +10% рутения (до 2300°). Было установлено, что сплав платины с 8% рения при рекристаллизащ и делается хрупким. Трой и Стевен исследовали различные комбинации вольфрама, молибдена, тантала, платины, родия, иридия, а также сплавы из этих металлов и определяли их э. д. с. в нейтральной атмосфере. Они пришли к выводу, что оптимальными свойствами обладает вольфрам-иридиевая термопара, которая имеет высокую э. д. с. выше 1000°, незначительную э. д. с. при комнатной температуре и почти линейную градуировочную зависимость между 1000 и 2100°. Было обнаружено, что после выдержки при высоких температурах в атмосфере  [c.100]

Самородное золою состоит из сплава и соединений его с серебром, медью, железом, теллуром, селеном, а иногда с висмутом, платиной, иридием и родием. Содержание золота в природных золотинах обычно составляет 750—800 лроб.  [c.296]

Килограмм — масса международного прототипа килограмма, представляющего собой цилиндр из сплава платины и иридия. Следует отметить, что при таком определении килограмма не выполняется третий базовый критерий выбора основных единиц системы ФВ. Эталон килограмма является единственным уничто-жимым эталоном из всех эталонов основных единиц системы СИ. Он подвержен старению и требует применения громоздких поверочных схем. Современное развитие науки пока не позволяет с достаточной степенью точности связать килограмм с естественными атомными константами. Часть из них, имеющих собственное название, приведена в табл. 1.2.  [c.20]

Легирование платины иридием (до 10-30%) и рутением (до 10 %) увеличивает летучесть сплавов, что ограничршает возможность их широкого применения.  [c.886]

Известно также использование платиновых металлов в ювелирной продукции (главным образом в Японии и в меньшей степени в других странах). В отечественной ювелирной промьппленности применяется сплав платины 950-й пробы, содер-жанщй 5 % иридия (Ств = 200-290 МПа, 5 = 20-30 %, 78-88 НВ, Гпл = 2060 К), а также сплавы палладия 850-й пробы (13 % серебра и 2 % никеля) и 500-й пробы (45 % серебра и 5 % никеля).  [c.887]

Среди всех элементов периодической таблицы обладают наибольшей рассеивающей способностью, а потому и наиболее пригодны для контрастирования электронномикроскопических препаратов иридий, осмий, рений, платина, вольфрам, золото, тантал. Однако, как мы уже отмечали выше, материалы для оттенения должны удовлетворять, кроме большой рассеивающей способности, еще целому ряду требований легкость испарения, высокая температура рекристаллизаци , малый размер кристаллитов, малая миграционная способность и т. д. Поэто.му практически из указанных металлов для оттенения применяются только платина и золото. Из прочих материалов весьма широкое применение нашли хром, уран, палладий, сплав золота с палладием и сплав платины с палладием, а также некоторые окислы окисел урана UsOe, окись вольфрама WO3.  [c.110]


Смотреть страницы где упоминается термин Сплавы платина—иридий : [c.419]    [c.115]    [c.433]    [c.47]    [c.813]    [c.496]    [c.32]    [c.40]   
Материалы в приборостроении и автоматике (1982) -- [ c.288 , c.289 , c.301 ]



ПОИСК



Иридий

Иридий и сплавы

Платина

Платинит



© 2025 Mash-xxl.info Реклама на сайте