Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние подачи на углы резца в процессе резания

ВЛИЯНИЕ ПОДАЧИ НА УГЛЫ РЕЗЦА В ПРОЦЕССЕ РЕЗАНИЯ  [c.155]

Влияние подачи на углы резца в процессе резания  [c.125]

На рис. 8, а показано влияние кинематики процесса на углы резца при наружном точении детали диаметром D с подачей s. Поверхность резания — винтовая поверхность I, плоскость резания — плоскость А А. Она повернута относительно плоскости резания в статике АА на угол fi. При увеличении подачи до s (поверхность резания II, плоскость резания А "А ") угол поворота плоскости резания увеличивается (H-i> Н-) и тем больше, чем больше величина s. Угол поворота также увеличивается с уменьшением D при неизменной подаче. Одновременно поворачивается на угол ц плоскость ВВ, перпендикулярная к плоскости резания АА, и она занимает положение В В. В результате поворота плоскостей изменяется величина углов у и а.  [c.23]


При слишком же больпюм заднем угле, наоборот, уменьшается угол заострения р, что приводит к ослаблению резца и понижению его теплостойкости. Как мы уже выяснили, на величину заднего угла в динамическом состоянии (в процессе резания) также оказывают влияние подача и диаметр обрабатываемой детали.  [c.32]

Неточность и износ инструментов. Изготовление инструмента осуществляется с высокой точностью, но режущий инструмент имеет значительный износ в процессе его работы. Обычно точность обработки связана с точностью изготовления режущего инструмента. Допуски на изготовление инструмента регламентируются ГОСТом. Существенно сказывается точность изготовления инструмента на точности обработки при работе мерным или профильным инструментом. Мерный инструмент копирует свои размеры непосредственно в теле детали (сверло, развертка, метчик и др.). Обработка профильным инструментом характерна тем, что его профиль переносится на обрабатываемую деталь (фасонные резцы, фрезы и др.). Имеются инструменты, которые являются одновременно мерными и фасонными, например протяжки, фасонные развертки и др. В процессе обработки деталей режущий инструмент изнашивается по режущим кромкам и постепенно изменяет свою форму и разкеры, но еще более значительные изменения претерпевает инструмент при заточках, особенно остроконечный инструмент. Инструмент изнашивается как по передней, так и по задней грани режущей кромки. Износ резца по передней грани существенно влияет на чистоту обработки и снижает прочность инструмента, но на точность обработки он влияет меньше, чем износ по задней грани. Износ инструмента характеризуется укорочением его в нормальном направлении к обрабатываемой поверхности, что ведет к изменению положения режущей кромки инструмента относительно базовой поверхности и изменению размера и формы обрабатываемой поверхности. Особое влияние на износ инструмента оказывает скорость резания. Подача и глубина резания в меньшей степени влияют на износ инструмента. Экспериментальные данные показывают, что подача больше влияет на износ резца, чем глубина резания. Кроме того, на износ инструмента влияет его конструкция, в частности большое влияние оказывает задний угол а. Увеличение угла а от 8 до 12° способствует повышению размерного износа инструмента. Износ резца по задней грани в натуральную величину переносится на обрабатываемую поверхность, снижая точность обработки. Если резец износится по задней грани на 0,1 мм, то диаметр обрабатываемой наружной цилиндрической поверхности увеличится на 0,2 мм. Если обработка ведется широколезвийным инструментом, то износ резца по задней грани влияет на размер и форму обрабатываемой поверхности. Износ резца пропорционален пути, пройденному лезвием инструмента в теле обрабатываемой детали, и зависит от материала инструмента, обрабатываемой детали, геометрии инстру-44  [c.44]


Процессу резания свойственна очень высокая степень деформации и соответственно этому большая величина сдвигающих напряжений на условной плоскости сдвига. На рис. 63 показано сопоставление зависимостей между сдвигающими напряжениями и относительным сдвигом при резании и при механических испытаниях углеродистых и легированных сталей. Как видно, величина относительного сдвига при резании в 2,5 — 3 раза, а сдвигающих напряжений в 1,5 раза больше, чем при растяжении и сжатии. Характерным является то, что при такой высокой степени деформации срезаемого слоя напряжение сдвигу не зависит от условий резания, а определяется только свойствами материала обрабатываемой детали. Например, по данным Н. Н. Зорева [28], при резании детали из стали ЗОХ при изменении переднего угла резца в пределах 0—40° и скорости резания 45—145 м/мин значения сдвигающих напряжений на условной плоскости сдвига колеблются в пределах всего 7%. Такое же заключение можно сделать на основании рис. 63, где изменение подачи от 0,156 до 0,51 мм/об практически не вызывает изменения величины т. Незначительное влияние степени деформации на сопротивление деформации по условной плоскости сдвига объясняется тем, что при резании материал обрабатываемой детали претерпевает столь высокую дефор-мированность, что его запас пластичности исчерпывается, а упрочнение приближается к пре-  [c.104]

Прежде считали, что нарост оказывает благоприятное влияние на продолжительность работы резца, предохраняя режущую кромку от из1юса под влиянием трения и температуры. Результаты исследований показали обратное. Нарост оказывает неблагоприятное влияние на весь процесс резания значительно ухудщается качество поверхности изделия вследствие неспокойной работы инструмента, возникает неравномерная подача и в первую очередь преждевременное повреждение режущей кромки инструмента. При обработке твердым сплавом наросты чаще всего образуются из-за неправильного выбора режимов резания н прежде всего скорости резания — слишком низкой для соответствующего обрабатываемого материала и сечения стружки. При этом срок службы режущей кромки инструмента сокращается, так как она в результате срыва наростов выкрашивается. Установлено, что наростообразование уменьшается при повышении твердости обрабатываемого металла, увеличении переднего угла, применении смазочно-охлаждающих жидкостей и более тщательной доводке передней поверхности инструмента.  [c.492]

ПРИЧИНЫ ИЗМЕНЕНИЯ ГЕОМЕГ-РИЧЕС КИХ ПАРАМЕТРОВ РЕЖУЩЕЙ ЧА( Г И РЕЗЦОВ. Все размеры угловых геометрических параметров режущей части резца проставляют на рабочем чертеже. При этом предполагается, что 1) верщина резца установлена на высоте оси вращения заготовки 2) геометрическая ось резца строго перпендикулярна оси вращения заготовки 3) вектор скорости подачи Vs направлен вдоль оси вращения заготовки, т. е. перпендикулярно геометрической оси резца. В соответствии с чертежом разрабатывают технологию изготовления резца и проверяют размеры всех угловых геометрических параметров режущей части. При этом угловые параметры, указанные на чертеже, сохраняют свои истинные значения только в том случае, если пространственное положение резца при эксплуатации соответствует указанным выще условиям их изображения на чертеже. Любые отклонения от этих условий, происходящие случайно или преднамеренно, приводят к изменению значений одного или нескольких угловых геометрических параметров. По влиянию на ход процесса резания изменения углов равнозначны замене резца исходной конструкции другим резцом, имеющим иную форму и геометричееские параметры режущей части.  [c.39]

Результаты расчета значений р для процесса точения заготовок из стали 12Х18Н9Т резцом с главным углом в плане ф=45° при расстоянии от центра анодного пятна до кромки инструмента L = =ilOO мм приведены на рис. 28. Наиболее сильно на температуру, вызванную накоплением теплоты в заготовке, влияет ее диаметр D (скорость и = onst). С увеличением D коэффициент р снижается, и для деталей большого размера он близок к единице, поскольку теплота, остающаяся в заготовке, успевает рассеиваться в массе последней. Второе место по влиянию на р занимает толщина среза (подача). С увеличением подачи при прочих равных условиях массивная стружка выносит из зоны резания все большее количество теплоты нагрева, а значит меньшая часть этой теплоты остается в заготовке. Увеличение скорости v и глубины резания t снижает температуру нагрева 0н.о, но одновременно снижает накопление теплоты в заготовке. Поэтому влияние и / на коэффициент р сравнительно невелико. Наоборот, возрастание мощности плазмотрона W увеличивает накопление теплоты, а с ним и коэффициент р, поскольку с увеличением W снижается сосредоточенность теплового потока, а значит при постоянной ширине среза увеличивается количество теплоты, попадающее в заготовку за пределами стружки.  [c.64]


Из приведенных выше расчетных зависимостей следует, что шероховатость обработанной поверхности снижается с уменьшением главного и вспомогательного углов в плане резца, подачи и с увеличением радиуса при вершине резца. Указанные параметры влияют на шероховатость в основном непосредственно как геометрические факторы. Глубина и скорость резания, радиус округление режущего лезвия и его износ, смазывающие и охлаждающие технологические среды, вибрации, свойства обрабатываемого и инструментального материала оказывают влияние на шероховатость через физико-химические процессы в зоне резания и формирования ПС. Оценка шероховатости по расчетным зависимостям, полученным из геометрических соображений, может с приемлемой точностью проводиться для поверхностей с шероховатостью Для более чистых поверхностей определение шероховатости проводится по эмпирическим зависимостям. В ряде случаев фактическая высота микронеровностей существенно выше расчетной, что связагю в основном с образованием нароста на передней грани инструмента, особенно в зоне его неустойчивого состояния. Периодичность образования нароста и его срывы ухудшают не только микрогеометрию поверхности, но и приводят к неоднородности ПС по структуре и механическим свойствам. Экспериментально установлено, что на микрогеометрию обработанной поверхности влияет упругая (), пластическая  [c.112]

С уменьшением угла ф и увеличением г интенсивность вибраций возрастает (рис. 28, в и г), так как при этом ширина среза увеличивается, а толщина уменьшается. Частота вибрации зависит незначительно от режима резания и геометрии резца. Устранение вибрации достигается снижением вызывающих их (возмущающих) сил и повышением жесткости колеблющейся системы. Снижение возмущающих сил достигается повышением скорости резания и подачи, а также некоторым увеличением угла у (на 5—10 ), по сравнению с его оптимальным значением, и угла ф и уменьшением г. Повышение жесткости системы достигается рациональным креплением заготовки и инструмента, применением люнетов, повышением сечения державки резца и др. Для снижения колебаний применяют виброгасители, рассеивающие энергию колебаний. В то же время при правильном выборе направления и параметров вибрации (амплитуды и частоты) последние оказывают полезное влияние на процесс резания. Метод работы с использова-ниед вибрации называется вибрационным резанием.  [c.47]


Смотреть страницы где упоминается термин Влияние подачи на углы резца в процессе резания : [c.588]    [c.58]   
Смотреть главы в:

Резание металлов и режущий инструмент  -> Влияние подачи на углы резца в процессе резания

Резание металлов и режущий инструмент Издание 3  -> Влияние подачи на углы резца в процессе резания

Резание металлов Издание 3  -> Влияние подачи на углы резца в процессе резания



ПОИСК



Влияние N-процессов

РЕЗАНИЕ Влияние угла резания

Резание подача

Резцы Подача

Углы резцов

Угол резания



© 2025 Mash-xxl.info Реклама на сайте