Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Оптическая обработка изображений

ОПТИЧЕСКАЯ ОБРАБОТКА ИЗОБРАЖЕНИЙ  [c.262]

Основными операциями обработки изображений являются операции спектрального и корреляционного анализа и пространственной фильтрации. Реализация этих операций базируется на свойстве линзы осуществлять двумерное фурье преобразование над когерентным оптическим сигналом и возможности синтезировать комплексные фильтры голографическим методом. Поэтому следующий параграф посвящен анализу оптического фурье-преобразования, а вопросы собственно оптической обработки изображений будут рассмотрены в гл. 7.  [c.204]


Рассмотрим принципы обработки изображений оптическими методами с целью улучшения их качества. Будем полагать, что обрабатываемое изображение предварительно зарегистрировано на некотором носителе, т. е. оптическая обработка изображений носит апостериорный характер. Это не означает, конечно, что рассматриваемые алгоритмы обработки нельзя реализовать в реальном времени (при наличии соответствующей элементной базы), однако анализ обработки фотоизображений удобен в методическом отношении и, кроме того, значительное число практических применений метода пространственной фильтрации связано с необходимостью обработки именно фотоизображений, получаемых при некогерентном освещении.  [c.244]

Кодирование и декодирование изображений представляет собой имеющую большое значение и интересную область оптической обработки изображений. Если изображение f x, у) необходимо закодировать в виде g x, у) методом пространственной фильтрации, то X фильтр, используемый для  [c.598]

Большой признательности заслуживает Национальный научный фонд, благодаря поддержке которого выполнялась эта работа по оптической обработке изображений. Частичная поддержка была также оказана со стороны Центра научных исследований ВВС и национальной аэронавтики, а также со стороны администрации Центра космических полетов им. Годдарда.  [c.618]

Рис. 7. Схема обобщенной голографической системы, содержащей два интерферометра (или ящика ), первый из которых служит для получения изменяющейся по пространству временной задержки, а второй — для воссоединения всех лучей с общей нулевой временной задержкой для всей системы. Голограмма в плоскости X действует как спектральный фильтр. Очевидна аналогия с когерентной оптической обработкой изображений. Рис. 7. <a href="/info/482997">Схема обобщенной</a> <a href="/info/175606">голографической системы</a>, содержащей два интерферометра (или ящика ), первый из которых служит для получения изменяющейся по пространству временной задержки, а второй — для воссоединения всех лучей с общей нулевой временной задержкой для всей системы. Голограмма в плоскости X действует как спектральный фильтр. Очевидна аналогия с когерентной <a href="/info/547677">оптической обработкой</a> изображений.
ОПТИЧЕСКАЯ ОБРАБОТКА ИЗОБРАЖЕНИЙ, МОДУЛИРОВАННЫХ СПЕКЛАМИ  [c.81]

При освещении дифракционной решетки R (рнс. 76) параллельным пучком в фокальной плоскости F объектива О формируется пространственный спектр решетки. Поместим в фокальной плоскости Р экран с отверстием, через которое проходит только прямое изображение источника, находящееся в точке F. В этом случае плоскость R, оптически сопряженная с плоскостью решетки R, освещена равномерно и не будет видно никакого изображения решетки. Увеличим диаметр отверстия так, чтобы пропустить через него прямое изображение источника и два первых порядка спектра решетки, расположенные по разные стороны от него. При этом появится изображение решетки. Если перекрыть прямое изображение источника в точке F, то штрихи в изображении решетки R будут в 2 раза чаще. В случае двумерной дифракционной решетки R можно также изменять ориентацию штрихов в ее изображении / , фильтруя соответствующим образом спектр решетки в фокальной плоскости объектива О. Этот классический эксперимент, известный под названием опыта Аббе, можно рассматривать как один из первых экспериментов по оптической обработке изображений. Он был обобщен и применен к произвольным объектам. Возьмем, например, плохо сфокусированную фотографию. Ее нерезкость обусловлена избытком низкочастотных составляющих. Ослабляя спектр изображения при помощи фильтра, который уменьшает свет в области, непосредственно прилегающей к изображению источника в плоскости F (в области низких пространственных частот), можно улучшить качество фотографии. В случае изображения, искаженного шумом, возникающим, например, вследствие зернистости фотоматериала, фильтр, ослабляющий свет в областях, более удаленных от F (областях, соответствующих высоким пространственным частотам), позволяет уменьшить шум зернистости. К сожалению, такой низкочастотный фильтр может отрезать высокие пространственные частоты самого изображения и ухудшить таким образом его качество. Если же изображение искажено периодическим шумом, то можно взять фильтр, который по-  [c.81]


Оптическая обработка изображений  [c.83]

Оптическая обработка изображений 91  [c.91]

Оптическая обработка изображение  [c.93]

Оптическая обработка изображений 95  [c.95]

Оптическая обработка изображений 81  [c.166]

Развитие таких систем предъявляет повышенные требования к техническим средствам. Необходимо существенное увеличение емкости и уменьшение габаритов внешних накопителей, уменьшение времени выборки информации. Переход на оптические диски доведет емкость до 200 Гбайт на одну поверхность. Необходимо улучшать характеристики терминалов. Намечается переход на графические терминалы со встроенными функциями обработки изображений, имеющие достаточно большую буферную память, модули для подключения к сетям передачи данных.  [c.68]

В примере сферической волны сведения об источнике, зарегистрированные голограммой, можно извлечь непосредственной обработкой самой голограммы, т. е. с помощью измерения радиусов колец (см. 59). В более сложных случаях, например, голограммы шахматных фигур, попытка такого рода обработки обречена на неудачу. С этой точки зрения восстановление изображения можно рассматривать как автоматическое преобразование сведений из одной формы в другую, более удобную для восприятия и для формулировки того или иного заключения на основе усвоенных сведений. В то же время, именно такое преобразование и составляет содержание многочисленных методов оптической обработки информации.  [c.268]

Таким образом, изменяя расстояние между объектом и фотопластинкой, можно получить различные типы голограмм, в частности с увеличением этого расстояния голограммы Френеля будут переходить в голограммы Фраунгофера, а с уменьшением — в голограммы сфокусированного изображения. Рассмотренные схемы получения голограмм нашли широкое применение в оптической обработке  [c.47]

В случае применения КОП анализируется спектр-Фурье исследуемых структур, получаемый с помощью оптических процессоров, описанных выше. Перспективно применение гибридных методов контроля, при которых предварительная обработка изображений (выделение объектов с заданными признаками, проведение операций типа свертки, пространственной фильтрации и т п.) производится быстродействующими КОП, а процедуры последующей классификации структур осуществляются ЭВМ (подсчет коэффициента формы, вычисление числа одинаковых элементов в поле зрения, корреляционный анализ, вычисление статистических характеристик и т. д.).  [c.114]

Хотя существуют различные методы моделирования изображения ВР, общий подход состоит в следующем. Предполагается некоторая микроструктура объекта, выполняется расчет изображения, полученный результат сравнивается с экспериментальной картиной, изменяется начальная микроструктура объекта и так до тех пор. пока расчетное изображение точно не совпадет с экспериментальным. Сложность данной процедуры состоит в том, что изображение чувствительно к следующим факторам положению электронного пучка относительно объекта и оптической оси прибора толщине образца, величине дефокусировки объективных линз, хроматической аберрации, когерентности пучка и внутренней вибрации материала. Для проведения корректных вычислений необходимо обладать по возможности полной информацией как об образце, так и об используемом микроскопе, так как многие параметры используются в программах расчета. Количественная обработка изображений высокого разрешения дает возможность сохранять изображение в компьютере в  [c.492]

В качестве введения в обширную сферу приложений оптической фильтрации и обработки изображений изложены основные идеи в области амплитудной, фазовой и голографической фильтрации, иллюстрированные примерами из оптической и электронной микроскопии и быстро развивающейся области распознавания образов. Также кратко описана обработка на основе корреляции спектров мощности и геометрической оптики.  [c.7]

Дифракция является промежуточной стадией в формировании оптического изображения. Это означает, в частности, что на стадии дифракции мы можем путем расчета управлять процессом образования изображения. Указанное обстоятельство определяет многие аспекты оптической обработки (гл. 5). Другим главным следствием стала разработка методов определения атомной структуры кристаллов независимо от их сложности по результатам рентгеновской дифракции.  [c.50]


В этой главе в общих чертах показаны главные положения фурье-анали-за при формировании оптического изображения и его обработке в условиях когерентного и некогерентного освещения. Они включают как одиночное преобразование Фурье, так и преобразование в сочетании со сверткой и корреляцией. Следует, однако, сразу же привлечь внимание к тому факту, что важность этих положений не ограничивается обработкой данных, имеющих оптическое происхождение. В настоящее время можно привести большое число примеров, когда методы оптической обработки используются для данных, по своей природе не являющихся оптическими. Основная причина кроется в том, что математические операции, которые применяются для большинства оптических систем, часто используются также в системах связи. Оптический аналог весьма привлекателен, поскольку ему свойственно преимущество двумерного представления и параллельной обработки данных. Этот способ во все увеличивающейся степени внедряется в практику в связи с разработкой электронно-оптических устройств сопряжения в сочетании с ЭВМ. Когда по каким-то причинам оптические методы не употребляются, ЭВМ может применяться изолированно в целях использования тех же фундаментальных принципов для цифрового изображения и обработки.  [c.84]

Перед детальным рассмотрением указанных вопросов было бы полезно сделать предварительный обзор разд. 5.2, 5.3, посвященных собственно формированию оптического изображения. Оптическая обработка в противоположность построению изображения связана с вмешательством в процесс разными способами и для разных целей и является предметом разд. 5.5.  [c.84]

Важность подхода с использованием этой модели состоит в ее чувствительности к процессу, при котором пространственные частоты структуры объекта (периодической и непериодической) выражаются дифрагированными волновыми фронтами и восстанавливаются для формирования изображения. Использование когерентного освещения позволяет воздействовать на дифракционную плоскость (плоскость пространственных частот) таким образом, что формирование изображения может управляться посредством фильтрации . Это один из аспектов оптической обработки, другие упомянуты в разд. 5.5.  [c.85]

Изящные примеры использования оптических преобразований были обнаружены в рентгеновской кристаллографии, где, как отмечено в гл. 2, формирование изображений атомов не может быть выполнено непосредственно, потому что отсутствуют линзы, которые могут быть использованы для сведения дифрагированных рентгеновских лучей. Отметим, что если зарегистрированы только интенсивности, то фурье-сум-мирование не может быть выполнено ни аналитически, ни экспериментально из-за отсутствия данных о фазах. В годы формирования указанного направления исследований У. Л. Брэгг сыграл ключевую роль в разработке методов оптического фурье-анализа для рассмотрения и решения этой и других проблем рентгеновской кристаллографии. Несмотря на то что развитие ЭВМ привело к машинным методам решения фазовой проблемы , работа Брэгга явилась важным вкладом в широкую область оптической обработки. В качестве основной литературы по развитию и применениям оптических методов к дифракции рентгеновских лучей, читатель может обратиться к работам, упомянутым в начале этого раздела.  [c.99]

Задача повышения контраста исходно малоконтрастных изображений возникает как при визуальном наблюдении, так и при оптической обработке изображений реальных сцен или изображений с экранов различного рода электронно-лучевых приборов (ЭОП, кинескопов), рептгенолюминесцентных экранов и т. п. Повышение контраста позволяет, прежде всего, увеличить эффективную чувствительность всей системы наблюдения или обработки изображений к регистрируемому излучению, а это означает в случае электронно-оптического преобразователя, например, увеличение дальности наблюдения.  [c.220]

Рис. 6.1.3. Структурная схема устройства оптической обработки изображений, использующего Photofifus. Рис. 6.1.3. <a href="/info/2014">Структурная схема</a> устройства оптической обработки изображений, использующего Photofifus.
На базе таких материалов могут быть созданы управляемые ПФ, появление которых откроет широкие возможности по синтезу разного рода легко перестраиваемых и адаптивных систем оптической обработки изображений, работающих в реальном времени и реализующих не только линейные, но и нелинейные алгоритмы. В качестве управляемых ПФ можно использовать некоторые типы пространственных модуляторов света (гл. 4). Следует, однако, заметить, что к управляемым ПФ предъявляются более жесткие, чем к ПМС, требования в отношении разрешения, динамического диапазона, уровня собственных шумов и т. п. В настоящее время только PROM удовлетворяет предъявляемым требованиям в значительной мере.  [c.231]

Относительная простота синтеза схем пространственной фильтрации с требуемым видом передаточной характеристики открывает большие возможности по оптической обработке изображений как с целью улучшения их качества, так и с целью извлечения максимума полезной информации. Можно указать на следующие задачи, которые сравнительно просто и эффективно решаются методом простраиствеиной фильтрации изображений повышение общего контраста малоконтрастных изображений устранение дефокусировки и смаза дифференцирование изображений ослабление влииния аддитивных помех и шумов контроль качества фотошаблонов интегральных схем и самих интегральных схем коррекция апертурных  [c.262]

Пять последующих глав посвящены практическим приложениям, в основе которых лежат указанные выше явления гл. 6 — оптической обработке изображений, модулированных спеклами, гл. 7 — регистрации перемещений и деформаций диффузных объектов, гл. 8 — применениям в астрономии, гл. 9 — измерению шероховатости поверхностей. Наконец, в гл. 10 рассматриваются некоторые другие применения оптики спеклов, в частности для исследования прозрачных объектов, определения макрорельефа диффузных поверхностей, аппаратной функции и аберраций оптической системы, а также для исследования движения диффузных объектов. Особо отмечу астрономические приложения, примером которых может служить один из самых красивых экспериментов в оптике, проведенный астрономом Лабейри. Он исследовал двойные звезды, уподобляя атмосферную турбулентность диффузору, и, в частности, измерил замечательным методом, открываю-ихим поистине Е евиданные возможности, их видимый диаметр.  [c.8]


Второе важное направление развития средств диагностирования машин связано с применением автоматизированных систем обработки изображения (АСОИЗ). Очевидно, что наибольший объем диагностической информации на практике можно представить в двух- или трехмерном виде. Тра щци-онно и стабильно по этому пути развивается рентгенография, рентгенотелевидение, тепловидение, эндоскопия, оптическая и ультразвуковая голография, звуковидение, магнитопорошковые, магнитографические, капиллярные методы и средства контроля качества.  [c.225]

Преобразователем является фотодиодная матрица МФ-14Б, в плоскости которой находятся 32X32 чувствительных элемента. Матрица включена в режиме накопления и осуществляет преобразование оптического сигнала в электрический аналоговый пропорционально величине светового потока за время накопления. Допускается регулирование интервала времени накопления и чувствительности по условиям освещенности рабочей сцены. Результат обработки изображения в цифровой форме выдается через выходной буфер ЭВМ в систему управления роботом. СТЗ имеет две градации яркости (выходной сигнал в виде цифрового шестнадцатиразрядного двоичного кода) время обработки изображения 60 мс разрешающая способность 2,5 мм.  [c.348]

ОПТИЧЕСКАЯ ОБРАБОТКА ИНФОРМАЦИИ — обработка информации с использованием оптич. излучения как носителя информац. сигнала и оптич. элементов для обработки. Достоинства О, о. и. связаны с возможностью быстрой параллельной обработки больших массивов информации. Наиб, характерной особенностью оптич. сигнала как носителя информации является его двумерность. Это свойство оптич. сигнала связано с малой длиной волны света Я < 1 мкм. Дело в том, что млн. размеры участка любого изображения, передаваемого с помощью волны, не могут быть меньше В оптич. диапазоне эта величина составляет 1 мкм, что и позволяет передавать но оптич. лучу небольшого сечения ( 1 см ) большое число (до 10 ) бит информации параллельно. Т. о., оитич. излучение даёт возможность представлять инфор.мацню в форме двумерных картинок, сменяющих друг друга во времени. Для оценки преимушцств такой формы подачи информации сравним её передачу в кино и но телевидению. В кино информация подаётся с помощью медленно движущейся киноленты со скоростью 24 кадра в секунду с большим объёмом информации в каждом кадре. В телевидении информация передаётся по радиоканалу, последовательно точка за точкой. Скорость передачи информации б МГц, т. е. в 250 тысяч раз быстрее, чем в кино. Но качество изображения на киноэкране значительно выше, чем на экране телевизионном. Т. о., даже медленная параллельная подача информации может иметь преимущества перед быстрой последоват. подачей.  [c.437]

Наиболее важные практические приложения жидких кристаллов основаны на их электрооптических свойствах. Жидкие кристаллы широко используются в электронных часах, калькуляторах, телевизорах в качестве индикаторов и табло для отображения информации и др. В комбинации с фоточ вствительными полупроводниковы 1и слоями жидкие кристаллы применяются в качестве усилителей, преобразователей изображений, устройств оптической обработки информации. В последние годы все более широкое применение находят жидкокристаллические композиты в сочетании с полимерами.  [c.50]


Смотреть страницы где упоминается термин Оптическая обработка изображений : [c.284]    [c.203]    [c.225]    [c.142]    [c.509]    [c.183]    [c.491]    [c.7]    [c.145]    [c.145]    [c.265]   
Смотреть главы в:

Пространственные модуляторы света  -> Оптическая обработка изображений

Передача и обработка информации голографическими методами  -> Оптическая обработка изображений



ПОИСК



Изображение оптическое

Когерентная обработка оптического изображения

Обработка изображения

Оптическая обработка

Оптическая обработка изображений, модулированных спеклами

Оптическая обработка информации с применением ДОЭ Оптическое формирование признаков изображения

Применения оптических методов обработки изображений

Теория образования изображения и обработка оптических сигналов при помощи преобразования Фурье

Формирование и обработка оптического изображения



© 2025 Mash-xxl.info Реклама на сайте