Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Анализ некоторых краевых задач для слоя

АНАЛИЗ НЕКОТОРЫХ КРАЕВЫХ ЗАДАЧ ДЛЯ СЛОЯ  [c.293]

Анализ применяемых численных методов решения контактных задач показывает, что в некоторых вариантах возможны такие вычислительные трудности по сравнению с решением классических краевых задач со смешанными граничными условиями, как нарушение положительной определенности систем алгебраических уравнений, появление неустойчивости их решения из-за плохой обусловленности, применяется численная реализация некорректно поставленных задач. Здесь предлагается алгоритм решения задачи контакта деформируемых тел, свободный от указанных недостатков, дающий в ряде случаев более быструю сходимость по сравнению с применяемыми методами. В качестве иллюстрации рассмотрено решение задачи контакта шероховатых тел с нелинейной податливостью шероховатого слоя.  [c.141]


Рассмотрим некоторые особенности поведения решения краевой задачи для крыльев степенной формы при отсутствии вязко-невязкого взаимодействия. При этом для упрощения анализа ограничимся случаем треугольного крыла т = 1), когда поле течения в пограничном слое описывается двумерной системой уравнений (5.63) при т = 1. В этой системе уравнений коэффициент при производных по г имеет вид  [c.212]

Введение. Поведение решений теории пластичности вблизи поверхностей трения, на которых удельные силы трения при скольжении равны пределу текучести при чистом сдвиге (условие максимального трения), обладает рядом характерных особенностей, которые, с одной стороны, могут приводить к трудностям при решении краевых задач, а с другой стороны, могут быть использованы для описания физических процессов в тонких слоях вблизи поверхности трения. По-видимому, первое исследование поведения решений в окрестности поверхностей максимального трения было выполнено в [1]. В этой работе была рассмотрена плоская деформация идеальножесткопластического материала, и анализ был основан на методе характеристик. Из результатов этой работы следует, что вблизи поверхности трения сдвиговая скорость деформации (в системе координат, связанной с поверхностью трения) и эквивалентная скорость деформации стремятся к бесконечности обратно пропорционально корню квадратному из расстояния до поверхности трения. Такое поведение поля скорости может быть получено из непосредственного анализа многих аналитических решений, начиная с известной задачи Прандтля (решение этой задачи можно найти в любой книге по теории пластичности, например [2]). Такое же поведение поля скоростей имеет место в осесимметричных решениях. Одно из наиболее известных решений — течение в бесконечном сходящемся канале [3]. Однако в случае осесимметричной деформации уравнения, вообще говоря, не являются гиперболическими (за исключением теории, основанной на условии текучести Треска, и других подобных теорий), хотя изолированные характеристические поверхности могут существовать [4]. Вследствие этого подход, развитый в [1], не мог быть применен для осесимметричных и пространственных задач. В [5-8] был использован другой подход для асимптотического анализа поля скоростей вблизи поверхностей максимального трения для различных условий течения и гладких условий текучести. Во всех этих работах получено, что закон поведения эквивалентной скорости деформации такой же, за исключением некоторых частных случаев, как и при плоской деформации. В [9 аналогичный результат был получен для осесимметричного течения материала, подчиняющегося условию текучести Треска.  [c.78]



Смотреть страницы где упоминается термин Анализ некоторых краевых задач для слоя : [c.171]    [c.81]   
Смотреть главы в:

Механика многослойных эластомерных конструкций  -> Анализ некоторых краевых задач для слоя



ПОИСК



I краевые

Анализ некоторых краевых задач

Задача краевая

Задачи анализа

Некоторые задачи



© 2025 Mash-xxl.info Реклама на сайте