Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Двумерный ламинарный пограничный слой на плоской поверхности

ДВУМЕРНЫЙ ЛАМИНАРНЫЙ ПОГРАНИЧНЫЙ СЛОЙ НА ПЛОСКОЙ ПОВЕРХНОСТИ  [c.207]

В качестве другого примера рассмотрим применение уравнений Навье — Стокса в форме уравнений Рейнольдса к двумерному турбулентному пограничному слою около плоской или слабо искривленной поверхности, используя тот же метод оценки порядка величин, который применялся в гл. 8 для ламинарного течения. Пренебрегая массовыми силами, получаем  [c.240]


Нетрудно показать, что в ламинарных пограничных слоях на плоских пластинах и на поверхности тел малой кривизны статическое давление уменьшается в направлении к поверхности тела. Для плоских пластин, обтекаемых двумерным потоком, из  [c.268]

Устойчивость трехмерных пограничных слоев. Совсем по-иному, чем при двумерном (плоском) основном течении, происходит переход ламинарной формы течения в турбулентную в трехмерном пограничном слое. Примером такого рода, для которого, между прочим, ламинарный пограничный слой очень хорошо изучен ( 2 главы V), является течение вблизи диска, вращающегося в покоящейся жидкости. Как в этом случае происходит переход ламинарной формы течения в турбулентную, отчетливо показывает фотоснимок течения вблизи поверхности вращающегося диска (рис. 17.39), полученный Н. Грегори, Дж. Стюартом и В. С. Уокером В кольцеобразной области образуются стоячие вихри в форме логарифмических спиралей. Внутренний радиус этой области определяет возникновение неустойчивости.  [c.486]

Существующие теории устойчивости предполагают, что неустойчивость наступает одновременно во всей области течения, где достигнуты критические условия. Так, для двумерного пограничного слоя на плоской поверхности состояние неустойчивости должно было бы наступить по всей длине некоторой линии, перпендикулярной направлению течения. Это показано схематически на рис. 11-5,а. Однако, судя по всему,, в действительности это не так. Турбулентные возмущения появляются сначала в ограниченных зонах или пятнах внутри жидкости [Л. 3]. Эти пятна растут по мере того, как они сносятся вниз по потоку, вторгаясь в ламинарно текущую жидкость, нока отдельные пятна не сольются между собой. Распространение и развитие турбулентных пятен иллюстрируются на рис. 11-5,6. Таким образом, возникновение турбулентности трехмерно по своему су-  [c.228]

Этот частный случай отрыва потока может быть применен для практических приложений с использованием преимуществ отрывного течения. Отрыв такого типа может существовать как в ламинарных, так и турбулентных течениях, включая взаимодействие скачка уплотнения с пограничным слоем, присоединение оторвавшихся слоев и пульсационные нестационарные течения. Вначале перечисляются некоторые возможные практические приложения затем описываются особенности механизма течения. Наконец дается описание подробной картины течения на основе экспериментальных наблюдений. Экспериментальные исследования проводились большей частью на цилиндрических моделях с носовыми частями, имеющими полусферическую форму, плоскую форму, полусферическую форму с плоским срезом, а также форму оживала и усеченного конуса. Интервал исследуемых чисел Маха набегающего потока 1,75 Моо 14 ж чисел Рейнольдса, вычисленных по диаметру цилиндрической части тела, 0,85-10 Re 1,5-10 . Течение около таких осесимметричных моделей при нулевом и отличном от нуля углах атаки будет рассмотрено более тщательно после рассмотрения свойств течения около двумерных поверхностей при нулевом угле атаки. Коэффициенты сопротивления, подъемной силы и т. п. определялись каждым исследователем по-своему, что будет упомянуто в соответствующих разделах.  [c.218]


По уравнению (10-51) можно весьма просто определить коэффициент теплоотдачи к ламинарному пограничному слою на теле вращения с постоянной температурой поверхности при произвольном изменении вдоль нее скорости внешнего течения й . Для плоского течения R выпадает из уравнения. Легко показать, что при обтекании плоской пластины уравнение (10-51) сводится к уравнению (10-13), а при двумерном и осесимметричном течениях в окрестности критической точки — соответственно к уравнениям (10-17) и (10-18). Таким обра-  [c.272]

Получено асимптотическое решение уравнений Навье-Стокса при больших числах Рейнольдса, описывающее влияние тонкого продольного вихря постоянной циркуляции на развитие двумерного стационарного ламинарного пограничного слоя несжимаемой жидкости на плоской пластине. Установлено, что в узкой области на поверхности пластины, вытянутой вдоль вихревой нити, вязкое течение описывается уравнениями трехмерного пограничного слоя. Изучено решение этих уравнений при малых значениях циркуляции вихревой нити. Обнаружен коллапс решения уравнений двумерного предотрывного пограничного слоя, вызванный сингулярным поведением трехмерных возмущений вблизи точек нулевого продольного трения.  [c.97]

Ещё более сложные и разнообразные процессы обнаруживаются при переходе от ламинарного течения к турбулентному в пограничных слоях вблизи твёрдых поверхностей. В простейшем случае пограничного слоя на плоской пластине его толщина 5 v.v/ o и локальное число Рейнольдса Re-buo/v растут с расстоянием. y вдоль потока. Линейный анализ устойчивости показывает, что достаточно слабые возмущения, распространяясь вдоль потока, должны неизбежно затухать. Поэтому, как и в случае течения Пуазёйля с докритич. неустойчивостью, на характер перехода влияет уровень возмущений в набегающем потоке, запускающих нелинейные механизмы, а в переходной области также наблюдаются турбулентные пятна, хотя и с несколько отличающимися параметрами. При заданий регулярных нач. двумерных возмущений (капр., с помощью вибрирующей ленты) с ростом Re (т. е.  [c.179]

Задачи вязкого течения жидкостей и газов в пограничном слое при внешнем обтекании тел. Этот класс объединяет все задачи ламинарного и турбулентного, стационарного и нестационарного режимов течения однородных и миогокомионентных газов и жидкостей при свободном и вынужденном обтекании плоских и пространственных тел с произвольным распределением скоростей в потенциальном или завихренном потоке при произвольных условиях на границах и на поверхностях разрывов, Задачи данного класса описываются системой дифференциальных уравнений параболического типа, содержащей по крайней мере одну одностороннюю пространственную или временную координату, вдоль которой протекающий процесс зависит только от условий на одной из границ рассматриваемой области. Например, для задач теплообмена при неустановившемся ламинарном или турбулентном двумерном движении однородного газа система, состоящая из уравнений неразрывности движения и энергии, имеет вид  [c.184]


Смотреть главы в:

Механика жидкости  -> Двумерный ламинарный пограничный слой на плоской поверхности



ПОИСК



Ламинарное те—иве

Ламинарные пограничные слои

Поверхности плоские

Пограничный слой ламинарный

Пограничный слой на плоской

Слой ламинарный

Слой плоский

Тор двумерный



© 2025 Mash-xxl.info Реклама на сайте