Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теплоотдача пластины при турбулентном течении

Рис. 2.36. Локальная и средняя теплоотдача пластины при турбулентном течении жидкости Рис. 2.36. Локальная и <a href="/info/513374">средняя теплоотдача</a> пластины при <a href="/info/2643">турбулентном течении</a> жидкости

Теплоотдача пластины при турбулентном течении  [c.116]

Для определения влияния любого размерного фактора на коэффициент теплоотдачи необходимо выразить все безразмерные числа через входящие в них размерные величины и получить зависимость а от всех размерных величин в явном виде. Но скорость входит только в одно безразмерное число Re, поэтому степень ее влияния на а равна степени влияния Re на Nu. Для продольного обтекания пластины — при ламинарном течении в пограничном слое и — при турбулентном.  [c.212]

Формулы, определяющие теплоотдачу пластины, могут быть использованы также для расчета теплоотдачи при внешнем продольном омывании одиночного цилиндра, если его диаметр существенно больше толщины пограничного слоя. Более глубоко с теорией теплообмена при турбулентном течении в пограничном слое можно ознакомиться с помощью специальной литературы [Л. 47, 90, 92, 109, 192, 202].  [c.199]

Рис. 6.20. Сравнение экспериментальных данных о теплоотдаче при турбулентном течении воздуха, воды и трансформаторного масла вдоль плоской пластины и данных о массопереносе при сублимации нафталина с поверхности пластины в течение воздуха (кружки) с результатами расчета по формуле (6.94) (кривые). Рис. 6.20. Сравнение экспериментальных данных о теплоотдаче при <a href="/info/2643">турбулентном течении</a> воздуха, воды и <a href="/info/33557">трансформаторного масла</a> вдоль <a href="/info/204179">плоской пластины</a> и данных о массопереносе при сублимации нафталина с поверхности пластины в течение воздуха (кружки) с <a href="/info/555466">результатами расчета</a> по формуле (6.94) (кривые).
С увеличением толщины теплового пограничного слоя при ламинарном течении жидкости у поверхности пластины интенсивность теплоотдачи уменьшается. В переходной зоне общая толщина пограничного слоя продолжает возрастать, однако значение а при этом увеличивается, потому что толщина ламинарного подслоя убывает, а в образующемся турбулентном слое тепло переносится не только теплопроводностью, но и конвекцией вместе с перемещающейся массой, т. е. более интенсивно. В результате сум-.марное термическое сопротивление теплоотдачи убывает.  [c.80]

Теплоотдача от жидкости к пластине определяется характером течения рабочего тела вдоль поверхности. Около пластины образуется пограничный слой, в котором движение может быть как ламинарным, так и турбулентным. Однако и при турбулентном пограничном слое у стенки имеется тонкий ламинарный подслой, представляющий собой главное термическое сопротивление.  [c.431]


Использование этих выражений совместно с интегральным уравнением теплового пограничного слоя приводит к следующим формулам для местной теплоотдачи пластины соответственно при ламинарном и турбулентном режимах течения  [c.42]

Как в случае обтекания пластины, так и здесь при больших числах Re закон теплоотдачи оказывается почти точно совпадающим с законом для турбулентного течения в трубе.  [c.241]

Как в случае обтекания пластины, так и здесь при больших числах Re закон теплоотдачи оказывается почти точно совпадающим с законом для турбулентного течения в трубе. Физические свойства относятся к средней температуре по-  [c.226]

Если на пластине имеется участок ламинарного течения большой протяженности, то необходимо последовательно рассчитать теплоотдачу на ламинарном и турбулентном участках, принимая следующее условие стыковки при Х = Хкр .  [c.47]

Содержание работы. Определение локальных значений коэффициентов теплоотдачи по длине пластины, обтекаемой потоком воздуха, при ламинарном и турбулентном режимах течения в пограничном слое. Обобщение результатов опыта в критериальном виде и сравнение полученных зависимостей с имеющимися в литературе экспериментальными данными. Определение профилей скорости и температуры в пограничном слое.  [c.153]

Теплоотдача при вынужденном движении жидкости вдоль плоской поверхности. При движении жидкости вдоль плоской поверхности профиль распределения продольной скорости поперек потока изменяется по мере удаления от передней кромки пластины. Если скорость в ядре потока и о, то основное изменение ее происходит в пограничном слое толщиной б, где скорость уменьщается от vvo до и,. = О на поверхности пластины. Течение в пограничном слое может быть как ламинарным, так и турбулентным. Режим течения определяется критическим значением критерия Рейнольдса, нижний предел которого для ламинарного пограничного слоя равен Re p = 8 Ю , а при Re > 3 10 вдоль пластины устанавливается устойчивый турбулентный режим течения. При значениях 8 10 < Re < 3 10 режим течения — переходный (рис. 2.30).  [c.170]

При пленочном кипении на поверхности вертикальных труб и пластин течение пара в пленке обычно имеет турбулентный (вихревой) характер. Поверхность пленки испытывает волновые колебания , толщина пленки растет, в направлении движения пара. Опыты показывают, что теплоотдача практически не зависит от  [c.124]

При пленочном кипении на поверхности вертикальных труб и пластин течение пара в пленке обычно имеет турбулентный (вихревой) характер. Поверхность пленки испытывает волновые колебания, толщина пленки растет в направлении движения пара. Опыты показывают, что теплоотдача практически не зависит от высоты поверхности нагрева, а следовательно, и от расхода пара в пленке. В целом процесс оказывается во многом аналогичным свободной конвекции однофазной жидкости около вертикальных поверхностей. В данном случае подъемная сила, определяющая движение пара в пленке, определяется разностью плотностей жидкости и пара g (р —р ). Расчет теплоотдачи в этом случае может проводиться по формуле [53 ]  [c.135]

Теплоотдача при постоянной плотности теплового потока на стенке, рассчитанная по этому уравнению, приблизительно на 4% выше, чем теплоотдача при постоянной температуре пластины. Напомним, что при ламинарном пограничном слое эта разница составляла 36%. Теплообмен при внешнем турбулентном пограничном слое, как и при течении в трубах, значительно менее чувствителен, к изменению температуры стенки, чем при ламинарном, особенно при высоких числах Прандтля. Напротив, при низких числах Прандтля влияние изменения температуры стенки на турбулентный пограничный слой достаточно велико.  [c.294]

Если плотность частиц достаточно велика, так что условия во внешнем потоке не зависят от теплоотдачи от обогреваемой П.ЛОСКОЙ пластины, и диффузное излучение имеет место только в слое порядка толщины пограничного слоя, то выполняются условия Тро = То и /р =С7, и смесь при турбулентном режиме течения ведет себя как смесь газов (разд. 5.6).  [c.368]


Если турбулентный пограничный слой развит на всей плоской поверхности, то коэффициент теплоотдачи монотонно уменьшается от начала до конца пластины (рис. 19.3). При смешанном течении жидкости по плоской поверхности закономерность изменения а имеет другой вид с характерными экстремальными значениями и явно выделенным переходным участком, ограниченным координатами Хкр и Хкр2. В этом случае средний коэффициент теплоотдачи определяется отдельно для участков с различными режимами течения.  [c.294]

В настоящее время теплообмен при обтекании тела потоком с химическими реакциями находится в стадии изучения. Исследовались в основном paiBHOBe Hbie течения диссоциирующего газа при химически не активной (не каталитической) поверхности стенки. Расчетно-теоретические исследования показывают, что коэффициенты теплоотдачи с уче-том переменности физических свойств могут отличаться от а при постоянных свойствах в случае ламинарного пограничного слоя на пластине на величину до 30%, турбулентного — до 50%. В обоих случаях а вычисляется по уравнению (15-10) Отмечаемая разница тем значительнее, чем больше отличаются от единицы отношения энтальпий ho/h или плотностей рс/ро-  [c.357]

Рис. 6.1. Схема течения и распределение коэффициентов теплоотдачи при переходе ламниариого течения в турбулентное на пластине Рис. 6.1. Схема течения и <a href="/info/105659">распределение коэффициентов</a> теплоотдачи при переходе ламниариого течения в турбулентное на пластине

Смотреть страницы где упоминается термин Теплоотдача пластины при турбулентном течении : [c.92]    [c.307]    [c.394]   
Смотреть главы в:

Справочник по теплопередаче  -> Теплоотдача пластины при турбулентном течении



ПОИСК



Теплоотдача

Теплоотдача к пластине

Теплоотдача при турбулентном течении

Течение турбулентное



© 2025 Mash-xxl.info Реклама на сайте