Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ожижители газов

Рассмотренный идеальный обратимый холодильный цикл может быть использован в ожижителе газа.  [c.51]

Т . Для определения численной величины г как функции температуры газа на выходе из испарителя-холодильника значения и следует брать по термодинамическим диаграммам. Нами вычислены значения е для простого воздушного ожижителя Линде с предварительным охлаждением при следующих условиях х=1 атм, Г, = 80° К, / 2=200 атм. Результаты приведены на фиг. 48, где показана зависимость г от температуры предварительного охлаждения Т .  [c.60]


Ожижители воздуха низкого давления. Второй предельный случай работы по схеме Клода имеет место, когда (1—х)—доля газа, проходящего через детандер, становится очень большой (- 100/6). Для получения наибольшей эффективности в этих условиях необходимы сравнительно низкое давление ро после компрессора и низкая температура па входе в детандер. Хотя, как указывалось выше (п. 32), такие машины низкого давления применялись фирмой Линде в начале 30-х годов [130, 131, 182], однако первое подробное описание ожижителя воздуха, работающего по этому принципу, было дано Капицей [181]. Установка Капицы работает следующим образом воздух под давлением 6,5 атм поступает в машину и после прохождения через теплообменную систему. "разделяется на два потока, один из которых (1 —т), содержащий основную массу газа, проходит через турбину, используемую  [c.84]

Некоторые особенности движения газа в теплообменниках, используемых для получения низких температур. Как правило, обратный поток газа в теплообменниках низкотемпературных установок меньше прямого. В ожижителях, например, это вызвано тем, что часть газа прямого потока превращается в жидкость и уже не возвращается в теплообменник. Но могут встретиться и такие условия, когда оба потока одинаковы. Чтобы выяснить в этом случае соотношение между W и W, нужно знать зависимость от давления. Для идеального газа не зависит от давления. В случае реального газа и в случае температур, далеких от критической, когда в уравнении состояния можно ограничиться вторым вириальным коэффициентом, для небольших давлений справедливо соотношение  [c.104]

Перечень промышленных объектов, использующих двухфазные потоки, чрезвычайно широк. Достаточно назвать паровые котлы и парогенераторы АЭС, рефрижераторы и ожижители в технике низких температур, выпарные аппараты, испарители, конденсаторы, дистилляционные установки в различных технологиях, газо- и нефтепроводы, чтобы понять, насколько широка сфера применения двухфазных систем. При этом в большинстве названных (и неназванных) примеров имеют дело с организованным движением двухфазных сред в каналах.  [c.287]

Рассмотрим простой воздушный ожижитель Линде, описанный выше и схематически изображенный на фиг. 43. Цикл работы можно проследить по (Я — 15 )-диаграмме на фиг. 45. В этой диаграмме, как указывалось ранее (ср. фиг. 20 и 21), сплошные кривые изображают изобары iP2>P>Pi) тонкие пунктирные кривые — изотермы а жирная пунктирная—границу гетерогенной двухфазной области. Отметим, что внутри гетерогенной области изобары и изотермы прямолинейны и совпадают друг с другом, причем наклон их зависит от абсолютной температуры. Точка а представляет состояние газа при и р,, т. е. перед входом в компрессор. Процесс изотермического сжатия до и изображается линией аЬ. Практически = 293° К, а. ж приблизительно равны 1 и 200 атм соответственно. Линия Ьс изображает охлаждение сжатого газа в теплообменнике. Из точки с газ дросселируется от р и Тд до 7 j и 7 j, что показано горизонтальной прямой d (Я = onst). Положение точки d определяет относительное количество газа а, сжижаемое в процессе расширения. Жидкий воздух при р и Т- изображается точкой /, а воздух в состоянии насыщенного пара при тех же р и 7, — точкой е. Этот газообразный воздух через теплообменник возвращается, на вход компрессора, что показано на диаграмме линией еа.  [c.57]


Более современные ожижители воздуха. Подробное описание более современных ожижителей воздуха по схеме Линде выходит за рамки настоящей работы. Можно лишь указать, что они основываются на схеме с двумя ступенями давлений, приведенной на фиг. 55. Однако в настоящее время основной задачей является производство не жидкого воздуха, а чистого жидкого кислорода или чистого жидкого азота, которые получаются путем низкотемпературной ректификации воздуха. Небольшие воздухоразделительные установки, пригодные для лабораторий, разработаны с использованием холодильного цикла, основанного на адиабатическом расширении сжатого газа (см. разделы 6 и 7), как, например, схелхы Клода—Гейландта (и. 32) и схемы низкого давления (и, 36 п 37).  [c.67]

Первое подробное описание водородного ожижителя, работающего по схеме, примененной Дьюаром, было дано в 1901 г. Треверсом [136] (см. также [137, 138]). Устройство ожижителя показано на фиг. 56 ниже приводится его краткое описание в изложении салюго Треверса Водород из компрессора под давлением 200 атм перед поступлением в ожижитель проходит змеевик А, охлаждаемый до —80" С смесью твердой углекислоты и спирта. После этого водород попадает в змеевик, верхняя часть которого находится в камере В, заполненной во время работы жидким воздухом. Нижняя часть змеевика находится в закрытой камере С, которая через трубку / откачивается вакуумным насосом. Из камеры В часть жидкого воздуха через игольчатый вентиль, управляемый ручкой 6, попадает в камеру С и, выкипая там под давлением 100 мм рт. m , понижает температуру до —200° С. Затем сжатый водород проходит основной теплообменник Z), расположенный в сосуде Н с вакуумной изоляцией, и расширяется в дроссельном вентиле Е. Получившаяся при этом жидкость отделяется от газа и собирается в сосуде К с вакуумной изоляцией, а неожижившийся газ направляется обратно к компрессору через межтрубное пространство теплообменника D, кольцевой зазор F, выходные трубы G,W, Вж кран Ь.  [c.68]

Ожижитель воздуха Клода—Гейландта. В табл. 14 приведены значения (1—х) доли газа, проходящего через детандер, и температуры газа Т,. на входе в детандер в зависимости от давпепия сжатия р. для осуществления цикла с максимальной эффективностью. Существуют два предельных случая работы по схеме Клода первый, когда температура газа на входе в детандер Г,, становится равной комнатной температуре, и второй, когда количество газа, проходящего через детандер (1—х), приближается к 100%. Первый предельный случай используется в схеме ожижителя воздуха Гейландта, второй — в схемах низкого давления с детандером, работающим при очень низких температурах. Такие машины низкого давления появились в начале 30-х годов в воздухо-разделительных установках системы Линде—Френкля с ирименением турбодетандеров [182].  [c.84]

В ожижителе воздуха Клода—Гейландта часть газа (примерно 60%) поступает в детапдер при комнатной температуре. В детандере газ расгап-ряется и охлаждается примерно до 150° К, после чего возвращается в теплообменник при низком давлении. Рассматриваемая схема обладает двумя преимуществами во-первых, в этой схеме может быть исключен первый теплообменник Е , во-вторых, здесь работа детандера при сравнительно высоких температурах уменьшает до минимума трудности смазки и теплоизоляции машины. Наконец, как можно видеть пз данных табл. 14, такой ожижитель имеет наилучшие показатели по расходу энергии из всех установок типа Клода.  [c.84]

Коллинз [179] усовершенствомал детандер Капицы, изготовив поршень и цилиндр детандера своего гелиевого ожижителя из азотированной стали, что позволило уменьшить зазор между ними до 7—10 на каждые 25 мм диаметра. Это снизило утечку газа и дало возможность получить адиабатический к. п. д. до 80%. Коллинз и др. [180) применили подобные же детандеры с бес-копьцевыми поршнями, но больших размеров в воздухо-ожижительных и кислородных установках низкого давления.  [c.91]

Теплообменник двухступенчатого ожижителя воздуха по схеме Линде (см. п. 21) должен иметь три секции, предназначенные для газа высокого, среднего и низкого давлений его устройство показано на фиг 81. Недостатки, присуш,ие теплообменникам типа Линде, в значительной мере устранены в теплообменнике типа Хемпсона [118], изображенного схематически на фиг. 82. Газ высокого давления идет по трубчатому змеевику, навитому в несколько рядов (описание способа навивки см. в п. 23, а также в статье Кука [214]). В теплообменниках более сложной конструкции аналогичным образом свивается целый ряд параллельных трубок (см. Спендлин [215]). Обратный поток расширенного газа идет но зазорам между трубками высокого давления, которые помеш ены в пространстве, ограниченном трубами а ш Ь (см. фиг. 82). Теплообменники Хемпсона можно считать аппаратами с перекрестным током, ибо таз низкого давления обтекает трубки змеевиков высокого давления практически под прямым углом. Чтобы сохранить необходимый зазор между трубками высокого давления, перед навивкой их обматывают проволокой или нейлоновой нитью [215]. Применяются также и другие способы обеспечения соответствующих проходов для обратного потока ), например навивка трубок высокого давления рядами, с проставками между каждая рядом. Другие возможные варианты конструкций таких теплообменников даны в п. 48.  [c.100]


Широко распространенные теплообменники Хемпсона были рассмотрены в п. 41. Весьма удачный теплообменник был применен Коллинзом [179] в его нервом гелиевом ожижителе. Теплообменник представлял собой два концентрических конуса, изготовленных из плохо проводящего тепло металла, в пространстве между которыми протекал газ низкого давления, омывая находящиеся там же трубки, по которым пропускался газ высокого давления.  [c.111]

Экспансионный ожижитель Симона. Существуют три различных типа гелиевых ожижителей, а именно непрерывного действия с предварительным водородным охлаждением, непрерывного действия с охлаждением детандером и хорошо известный процесс ожижения без использования непрерывного потока. Первые два способа ожижения кратко описаны выше. Третий способ используется в так называемом экспансионном ожижителе Симона [2], который показан схематически на фиг. 7. В этом ожижителе газообразный гелий, охлажденный и змеевике S, нагнетается в металлическую камеру В, охлаждаемую жидким или твердым водородом G. Чтобы обеспечить теплопроводность пространства Z, последнее заполняется гелием при низком давлении. Теило, поглощенное водородной ванной, определяется уменьшением внутренней энергии гелия после входа в камеру и работой сжатия. Работа сжатия равна 2 mpv, где т—масса очень малого количества входящего "аза, а v—его удельный объем. Если весь газ входит при одинаковой температуре Т,, то общая работа потока равна NRT , где lY—число молей газа, который входит в камеру, а В—газовая постоянная. Охлаждение с помощью водорода, требующееся для поглощения тепла, производимого работой сжатия, может оказаться больше того, которое необходимо для изменения внутренней энергии гелия. Это видно из сравнения величины двух произведений В1 и С ,ср,(2 ,—Tj), где Гд—конечная температура.  [c.132]

Теплообменники. Из схемы ожижителей непрерывного действия видно, что поток гелия после сжатия ири комнатной температуре охлаждается до очень низкой температуры и после расширения частично ожижается. Неожиженная часть проходит через протнвоточиый теплообменник и вновь направляется в кодпхрессор для повторного сжатия. Благодаря теплообменнику можно с высокой эффективностью использовать холод расширенного газа.  [c.134]

В теплообменнике тппа д трубка высокого давления окружена частыми тонкими медными ребрами (толщина 0,25 мм), так что наружная поверхность трубки утраивается. Спираль из ребристой трубки полностью заполняет кольцевое пространство между двумя тонкостенными цилиндрами из нержавеющей стали. Газ низкого давления проходит сложный путь между ребрами, так как в пространстве между смежными витками трубки проложена спираль из хлопчатобумажного шнура. Вследствие значительно большей поверхности в потоке низкого давления может быть принят более низкий коэффициент теплопередачи, что будет сопровонщаться также выигрышем в общей эффективности. Удобная особенность всех упомянутых типов теплообменников заключается в том, что они выполняются в виде сппрали большого диаметра, пространство внутри которой можно использовать для размещения других элементов ожижителя.  [c.138]


Смотреть страницы где упоминается термин Ожижители газов : [c.239]    [c.239]    [c.241]    [c.243]    [c.244]    [c.249]    [c.251]    [c.437]    [c.319]    [c.319]    [c.321]    [c.323]    [c.323]    [c.325]    [c.327]    [c.50]    [c.52]    [c.54]    [c.61]    [c.70]    [c.75]    [c.82]    [c.86]    [c.92]    [c.96]    [c.96]    [c.109]    [c.143]    [c.148]    [c.149]    [c.445]    [c.784]   
Смотреть главы в:

Теплоэнергетика и теплотехника  -> Ожижители газов

Теплоэнергетика и теплотехника Кн4  -> Ожижители газов



ПОИСК



Криорефрижераторы и ожижители газов

Ожижители



© 2025 Mash-xxl.info Реклама на сайте