Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термические методы обессоливания воды

Термические методы обессоливания воды  [c.170]

ТЕРМИЧЕСКИЙ МЕТОД ОБЕССОЛИВАНИЯ ВОДЫ  [c.349]

Важным показателем степени очистки сточной воды по органическим соединениям при глубоком ее обессоливании как химическим, так и термическим методом является электропроводимость. Соблюдение качества добавочной и питательной воды По этому показателю в пределах установленных норм является одним из условий нормального протекания водно-химического режима при работе ТЭС на очищенной городской сточной воде.  [c.102]


На многих станциях восполнение потерь конденсата производится дистиллятом, который получается из химически обработанной воды в испарительных установках. Этот метод подготовки добавочной воды называется термическим обессоливанием воды.  [c.349]

В последние годы расширяется применение испарителей в технологических схемах переработки сбросных вод в соответствии с требованиями Закона об охране окружающей среды. С этой точки зрения схемы термического обессоливания воды на электростанциях имеют определенные преимущества перед другими применяемыми в настоящее время методами.  [c.325]

СРАВНЕНИЕ ТЕРМИЧЕСКОГО МЕТОДА ОБРАБОТКИ ДОБАВОЧНОЙ ВОДЫ С МЕТОДОМ ГЛУБОКОГО ОБЕССОЛИВАНИЯ. ВЛИЯНИЕ РЕЖИМА РАБОТЫ УСТАНОВКИ НА ЕЕ ПОКАЗАТЕЛИ  [c.251]

Если качество природной воды не позволяет использовать ее непосредственно как питательную, то необходима установка для ее подготовки, работающая на основе иных, чем термическое обессоливание, методах (чаще всего химических). Таким образом, установка по производству дистиллята представляет собой комплекс, состоящий из схемы подготовки питательной воды и испарителя. Поэтому при подсчете приведенных затрат и расхода реагентов необходимо ориентироваться на этот комплекс. В зависимости от качества природной воды и требований к питательной на таких установках используются методы коагуляции, известкования, натрий-катионирования, натрий-хлор-ионирования, термический метод. Для существенного снижения потребления реагентов вместо этих установок или в дополнение к ним используются методы подкисления, введение затравок, углекислого газа, антинакипинов.  [c.291]

По сравнению с умягчением воды методами осаждения с применением реагентов и методами катионного обмена, а также по сравнению с методами химического и термического обессоливания воды основными преимуществами магнитной обработки воды являются простота, дешевизна, безопасность п почти полное отсутствие эксплуатационных расходов,  [c.346]

Испарительные установки. На ряде тепловых электростанций потери конденсата восполняются дистиллятом, получаемым из химически обработанной воды в испарительных установках. Этот метод подготовки добавочной воды называют термическим обессоливанием воды.  [c.183]

Цель обработки воды. Конденсат обычно имеет очень слабо кислую или щелочную реакцию и бывает загрязнен небольшими количествами меди и других металлов однако он не должен содержать солей и кислорода конструкторы должны учитывать желательность того, чтобы сконденсированная вода до ее впуска в котел не поглощала новых количеств кислорода. Неочищенная вода, идущая на восполнение убыли, как правило, содержит соли кроме того, она может поступать из загрязненного источника. Поэтому до введения ее в котел, эта вода обычно подвергается обработке. Главная цель обработки заключается в том, чтобы предотвратить образование на внутренней поверхности труб хорошо пристающей к ней накипи. Такая накипь мешает теплопередаче и служит причиной перегрева, что приводит к снижению прочности металла и создает угрозу внезапного разрушения трубы. Не пристающий к поверхности шлам может быть удален из котлов многих типов посредством продувки он является менее опасным. Перегрев может также привести к понижению термической отдачи, усилению окисления под воздействием топочных газов и, часто, к ускорению коррозии под воздействием воды. По этим причинам необходима обработка добавляемой воды. Обработка должна состоять 1) из умягчения воды химическим путем, перегонкой или методом обессоливания, имеющего целью максимально возможное удаление веществ, приводящих к образованию накипи и шлама, и 2) регулирования состава (кондиционирования) воды с целью обеспечения таких условий, чтобы выделяющиеся из воды вещества приводили к образованию шлама, а не накипи.  [c.395]


На многих ТЭС восполнение потерь пара и конденсата производится дистиллятом, получаемым в испарительных установках. Такой метод подготовки добавочной воды паротурбинных установок называется термическим обессоливание м воды. При термическом обессоливании из воды, содержащей различные растворенные в ней вещества, получают пар, который затем конденсируют. В тепловых режимах, при которых работают испарители, с паром уносится лишь очень небольшое количество капель, содержащих эти вещества. Устройства по очистке пара позволяют и этот унос многократно уменьшить. Поэтому получаемый па испарительных установках дистиллят пригоден для использования в качестве добавочной воды для любых современных паровых котлов. Вводимые в испаритель с водой растворенные в ней вещества выводятся из аппарата с продувкой.  [c.163]

Одним из основных преимуществ применения метода термического обессоливания при подготовке добавочной воды для паровых котлов является снижение сбросов засоленных вод из-за меньшей затраты реагентов и, следовательно, уменьшение антропогенного воздействия на окружающую среду. Особенно это сказывается при обработке природных вод с повышенным солесодержанием. Применение испарителей при этом должно обеспечивать более низкие приведенные затраты на подготовку воды и надежность по сравнению с альтернативными вариантами.  [c.290]

Подготовка добавочной воды для прямоточных котлов всегда ведется методами химического или термического обессоливания. Качество обессоленной воды оценивается  [c.283]

Максимальное ограничение сброса дополнительных солей, получаемых за счет использования товарных реагентов, связано с совершенствованием технологии водоприготовления приближением расхода реагентов в ионообмене к стехиометрическим, применением электродиализа, обратного осмоса, термических методов обессоливания. Наиболее сложным и дорогим является выпаривание минерализованных сточных вод. Применение этого метода должно быть увязано с последующей утилизацией получаемых концентратов и солей.  [c.20]

В настоящее время для обессоливания пресных вод наибольшее распространение в энергетике получил химический, точнее, ионитный способ обессоливания. Однако в последнее время в связи с необходимостью предотвращения загрязнения водоемов стоками водоподготовительных установок, а также с усовершенствованием других методов обессоливания воды — термического, электродиализного, обратного осмоса область применения химобессоливания, по мнению ряда авторов, должна сужаться [8, 83]. Диалектика прогресса такова, что старое либо должно уступить новому, или же под его натиском должно претерпеть такие качественные изменения, благодаря которым оно вновь утвердит свои позиции. По мнению автора, химобес-соливание находится сейчас именно в таком положении, оно должно утвердить свои несомненные преимущества.  [c.99]

Разрабатываются также ионитные методы обессоливания воды с рекуперацией реагентов и получением сухих солей (кесол-процесс), а также с термически регенерируемыми ионитами (сиротерм-процесс) [85]. Недостатками этих процессов являются сложность и громоздкость установок. Кроме того, эт способы обессоливания воды находятся еще на стадии стендовых исследований  [c.100]

Для заполнения контура паротурбинной установки и восполнения потерь в нем на современных крупных ТЭС может применяться только глубокообессоленная вода. В настоящее время такую воду получают почти всегда химическим и термическим методами обессоливания. Заполнение тепловых сетей и компенсация потерь в них проводятся обычно водой, умягченной ионированием.  [c.11]

Способы подготовки и обработки воды. Учитывая строгие нормы к содержанию в питательной и котловой водах коррозионно-агрессивных агентов (хлоридов, кислорода, избыточной щелочи), для предупреждения коррозионного растрескивания металла парогенераторов должны быть выбраны способы химического обессоливания (при среднем давлении) и полного химического обессоливания (при высоком давлении) добавочной воды, проводимые таким же образом, как и на обычных тепловых электростанциях. В отдельных случаях целесообразно применять обессоливание конденсата турбин. При реализации этого способа обработки воды, особенно для прямоточных котлов и парогенераторов, следует обращать серьезное внимание на то, чтобы при включении в работу анионитовых фильтров они тщательно отмывались от щелочи с учетом того, что нелетучая щелочь, даже в связанном с угольной кислотой виде, для аустенитных сталей недопустима. В барабанных парогенераторах (и котлах) должны быть также применены совершенные способы сепарации и промывки пара, обеспечивающие полное отсутствие в нем нелетучей щелочи хлоридов, которые в настоящее время достаточно хорошо разработаны. Чтобы предупредить образование накипи вследствие присосов охлаждающей воды в конденсаторах турбин, в парогенераторах следует поддерживать режим чисто фосфатной щелочности по методу, изложенному в 1У-5и 1У-6. Для обоих типов парогенераторов необходима совершенная термическая деаэрация питательной воды и дополнительная обработка ее гидразином. Кроме того, должно быть предупреждено чрезмерное загрязнение ее продуктами стояночной коррозии.  [c.348]


Химическая подготовка добавочной воды методом катионирования может применяться при значительных потерях конденсата лишь в случае высокого качества исходной воды (хмалой величины сухого остатка и кремне-кйслоты). Область возможного применения глубокого химического обессоливания значительно шире, чем катионирования, но стоимость глубокого химического обессоливания вод высокой жесткости весьма велика. Для питания прямоточных котлов необходима термическая подготовка добавочной воды.  [c.163]

Обобщены результаты исследований новых бессточных и малоотходных методов водопрнготовлення. Представлены схемы установок умягчения, химического и термического обессоливания воды, позволяющие исключить загрязнение окружающей средьг сточными водал1н и сократить расход реагентов. Рассмотрены методы и схемы обработки высокоминерализованных и морских вод, дана оценка их экономической эффективности.  [c.2]

Таким образом, при одновременном наличии источников пресной и морской вод использование для технических нужд термически обессоленной по разработанным методам морской воды может оказаться более эффективным не только с позиции сокращения дефицита пресных вод, но и с чисто экономической точки зрения. Указанное подтверждается на примерах эксплуатации установок термического обессоливания приморских ГРЭС Северная Азглавэнерго. На ГРЭС Северная для умягчения и последующей термической дистилляции артезианской и морской воды используются идентичный состав и количество оборудования. При этом экономический эффект от использования морской воды только за счет исключения затрат на артезианскую воду и реагенты составляет 0,26 руб./м .  [c.98]

При термическом обессоливании воды на испарители, как, правило, подается умягченная вода. Для обеспечения необходимой степени регенерации катионитов требуется расход реагентов, в 2—3 раза (а иногда и более) превышающий стехиометрический расход. Естественно, что это способствует более интенсивному загрязнению водоемов сбросными солями водоочистки. Как было отмечено ранее, с целью уменьшения сбросов солей от установок термического обессоливания до значения, близкого к количеству солей, содержащихся в исходной воде, высказываются мнения об отказе от катионитного метода глубокого умягчения и переходе к схемам с упрощенной предочисткой питательной воды испарителей (известкование, содоизвесткование, подкисление, введение затравочных кристаллов) либо о переводе испарителей на питание сырой водой без какой-либо предварительной обработки [8].  [c.170]

Одним из перспективных методов опреснения соленых вод является термический метод. Однако этот метод оказывается экономически выгодным при дешевых источниках тепла и относительно небольших удельных капитальных затратах на испарительную установку, которые могут быть достигнуты на установках высокой производительности при использовании тепла атомных электростанций двойного назначения (атомных теплоэлектроцентралей). Однако здесь необходимо предварительно разрешить ряд проблем, и прежде всего, применительно к испарительной установке, обеспечить безнакип-ный режим работы парогенерирующих поверхностей в достаточно широком интервале температур, по возможности более высокие значения коэффициентов теплопередачи и тепловых потоков, достаточно эффективную очистку вторичного пара от капель (при высоких скоростях пара в паровом объеме испарителя), установить наиболее экономичные схемы и параметры испарительной установки и станции в целом. В настоящее время эти и многие другие вопросы, возникшие при проектировании крупных установок по обессоливанию соленых вод, изучаются в лабораторных и полупромышленных условиях. В СССР (г. Шевченко) работает опытно-промышленная многоступенчатая установка производительностью 5 000 м 1сутки. Чтобы предохранить поверхности теплообмена от отложений, в исходную воду вводится мелкокристаллическая затравка того же состава, что и у накипи. Экспериментально установлено, что в определенных режимах накипеобразующие компоненты отлагаются только на кристаллах затравки. Укрупненные кристаллы выводятся из установок с продувкой.  [c.369]

Наиболее требовательны к качеству питательной воды прямоточные котлы. Они изготовляются преимущественно с большой производительностью в отдельном агрегате на высокие, сверхвысокие, критические и за-критические параметры пара. Поскольку в трубах прямоточных котлов питательная вода полностью испаряется, она должна поступать в них равной по качеству насыщенного пара, т. е. иметь общее солесодержание в пределах 0,05 мг1л и содержание кремниевой кислоты в пределах 0,01— 0,02 мг л. Следовательно, обычные природные воды, чтобы быть годными для питания прямоточных котлов, при любых потерях пара и конденсата должны подвергаться обработке по наиболее сложным схемам полного обессоливания и обескремнивания химическими или термическими методами.  [c.401]

На тепловых электростанциях (ТЭС) применяются различные методы обработки воды, однако в основном все эти методы можно разделить на безреагентные, или физические методы и методы, в которых используются различные препараты (химические реактивы). Безреагентные (физические) методы применяются и как отдельные этапы в общем технологическом процессе обработки воды, и как самостоятельные методы, обеспечивающие получение воды требуемого качества. Применяя химическую обработку (включая также методы ионного обмена), можно получить как умягченную, так и глубокообессоленную воду при одном из наиболее распространенных на ТЭС физических методов—термической обработке воды — всегда получают дистиллят, т. е. воду с очень небольшим содержанием примесей. Однако в ряде случаев при термической обработке, проводимой с целью глубокого обессоливания, применяется умягченная вода, т. е. вода, прошедшая уже химическую обработку или ионирование.  [c.6]


Химическое изнашивание происходит в результате коррозии — химического воздействия рабочих сред на материал деталей арматуры. В результате образуются химические соединения с низкими механическими свойствами, которые разрушаются под действием силовых нагрузок или вымываются рабочей средой. В конденсате и питательной воде АЭС могут быть растворены соли и газообразные вещества кислород воздуха, углекислота, азот, аммиак, водород, радиолитический кислород, радиоактивные благородные газы (РБГ — ксенон, криптон, аргон) и др. Однако коррозию металла оборудования вызывают лишь растворы солей, кислород и углекислота. Для удаления солей питательную воду обессоливают, а для удаления коррозионно-активных газов воду деаэрируют химически или термически. Основным методом является термическая деаэрация, заключающаяся в нагреве воды до температуры кипения. Несмотря на обессоливание и деаэрацию, в воде остается некоторое количество веществ, которые вызывают коррозию металлов, в результате чего образуются окислы, оседающие на стенках оборудования, в том числе и на арматуре. В первом контуре окислы, проходя активную зону реактора, приобретают радиоактивные свойства. Вода проявляет активное коррозионное действие уже через два часа пребывания стали в воде на поверхности металла можно обнаружить следы коррозии.  [c.264]

Таким образом, при методе химического обессоливания количество солей в стоке теоретически повышается до уровня,, эквивалентного сумме анионов сильных кислот и кремниевой кислоты, а при методе термического обессоливания — до уровня эквивалентного жесткости исходной воды. Если учесть, что для большинства источников жесткость пресной воды значительно больше, чем сумма анионов сильных кислот, то теоретически количество солей в стоках установок термического обессолива-  [c.101]

Подготовка добавочной воды для этих котлов ведртся методами термического или химического обессоливания с применением наиболее совершенных технологических схем. При сверхкритических параметрах наряду с обессоливани-ем добавочной воды производят обессоливание и удаление продуктов коррозии из всего потока турбинного конденсата и отдельных потоков конденсата регенеративных и сетевых подогревателей. Необходимость очистки основных потоков конденсатов при сверхкритических параметрах обусловливается уменьшением доли примесей, задерживаемых на поверхностях нагрева котла, и увеличением их выноса паром в связи с повышением растворимости веществ в перегретом паре с ростом давления (см. 5.2).  [c.160]

В связи с этим подготовку добавочной воды для котлов высокого давления ведут методом термического или химическог о обессоливания. Качество котловой воды регулируют организацией продувки, а также ступенчатого испарения для обеспечения экономически приемлемых размеров продувки.  [c.158]

При отпуске большого количества технологического пара из-за того, что потребитель возвращает только часть конденсата, возникает сложная задача приготовления больших количеств добавочной воды на ТЭЦ. На современных ТЭЦ эта задача может решаться методо.м химического обессоливания или термической водонодготовкой. При термической водоподготовке могут использоваться многоступенчатые испарительные установки.  [c.157]

Технико-экономические сравнения двух способов водоприготовле-ния (термического и глубокого обессоливания) показали, что метод глубокого обессоливания оказывается экономически оправданным при малом солесодержании исходной воды. Ори большом солесодержании (свыше 400 мг/кг) предпочтение следует отдать испарителям.  [c.268]


Смотреть страницы где упоминается термин Термические методы обессоливания воды : [c.141]    [c.252]    [c.11]    [c.103]    [c.255]    [c.97]   
Смотреть главы в:

Высокоэффективные методы умягчения, опреснения и обессоливания воды  -> Термические методы обессоливания воды



ПОИСК



Методы обессоливания воды

Методы термические

Обессоливание воды

Сравнение термического метода обработки добавочной воды с методом глубокого обессоливания. Влияние режима работы установки на ее показатели

Термическое обессоливание воды



© 2025 Mash-xxl.info Реклама на сайте