Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

РОТОР И ЕГО ДЕТАЛИ Конструкция рабочих лопаток

Способы охлаждения различных деталей ГТ зависят от их конструкции. Рабочие и сопловые лопатки изготавливают из высококачественных металлических сплавов с высокой жаропрочностью, чему способствуют их относительно небольшие размеры. Диски роторов обычно выполняют из сталей перлитного или ферритного класса, что облегчает их изготовление и улучшает ряд их характеристик, но температура нагрева металла в процессе работы не должна превышать 550 °С.  [c.107]


Применяют два типа дробеметных установок пневматические и механические. Механические дробеметы более распространены. Схема универсального дробемета ДУ-1 конструкции ЦНИИТМАШ показана на рис. 45. Он имеет приемный бункер /, элеватор 2, загрузочный бункер 3, бункер 4 для хранения запаса дроби, питатель 5 и ротор 6 с электродвигателем 7. При открытии питателя 5 дробь поступает в быстровращающийся ротор 6, лопатками которого она с большой скоростью отбрасывается на деталь 8. Образующаяся пыль отсасывается из рабочей камеры мощным вентилятором. Чтобы защитить поверхности камеры от быстрого износа, их защищают чугунными или стальными листами или плитами, а также облицовкой износостойкой резиной. В пневматических дробеметах для подачи дроби используется энергия сжатого воздуха. Дробь под давлением 5— 6 кгс/см выбрасывается на деталь из сопла дробеметного пистолета. Сопло для повышения износостойкости, изготовляют из минерало-керамики. Пневматические дробеметы наиболее удобны для обработки деталей сложного профиля. По производительности же и стабильности струи они уступают механическим дробеметам.  [c.106]

Корпус насоса изготовляется из трех частей крышки с входным патрубком, расположенной со стороны сальника насоса средней части — кольцевого отвода с напорным патрубком и глухой торцовой крышки. Трехсекционная конструкция корпуса позволяет более легко остеклить все внутренние поверхности деталей, а также установить входной и напорный патрубки в различных положениях. Рабочее колесо насоса с открытыми лопатками остеклено полностью, при этом оно имеет удлиненную ступицу, выходящую из узла сальникового уплотнения. Этим исключаются внутренние стыки на роторе насоса, соприкасающиеся с перекачиваемой жидкостью. Зазоры между рабочим колесом и корпусом приняты большими, чем в металлических насосах, однако это не снижает объемный к. п. д., так как компенсируется некоторым увеличением гидравлического к. п. д. благодаря уменьшению дисковых потерь остекленных поверхностей.  [c.113]

В радиоэлектронной, приборостроительной и электротехнической промышленностях с помощью электрофизических и электрохимических методов обрабатываются материалы с повышенными физико-механическими свойствами ферромагнитные сплавы, ферриты, специальная керамика, германий, кремний, синтетические рубины, алмазы и т. д., обработка которых механическими методами весьма трудоемка или невозможна. В авиационной, ракетной технике и турбонасосостроении электроэрозионным и электрохимическим методом изготавливаются большинство деталей со сложной формой фасонных поверхностей, например, лопатки рабочих колес турбин и насосов, цельные роторы, направляющие аппараты и т. д. Особенно большая эффективность от применения электрофизических методов обработки достигается при изготовлении точных и миниатюрных деталей. Задачи, связанные с обработкой прецизионных деталей машиностроения, когда точность обработки находится в пределах 2—5 мк, весьма успешно решаются при применении электрофизических и электрохимических методов, в то время как изготовление деталей этой точности механической обработкой сопряжено с большими трудностями. Указанные методы весьма эффективны в технологических процессах, эквивалентных шлифованию и полированию, так как легко обеспечивают обработку вязких металлов с чистотою поверхности до 11 — 12 класса. Весьма целесообразна обработка тонкостенных конструкций и деталей без заусенцев иди снятие их с деталей, обработанных другими методами. Обработка полостей или отверстий в труднодоступных местах также легко осуществляется с помощью электрофизических и электрохимических методов.  [c.293]


Многоцикловая усталость. Справедливость мнения, что турбины подвержены действию многоцикловой усталости, впервые была признана в начале 20-х гг. Многоцикловая усталость рабочих лопаток и деталей камеры сгорания неизменно сопряжена с резонансными колебаниями. Поэтому первая задача конструкторов — определение собственной частоты колебания различных деталей, в первую очередь рабочих лопаток и камеры сгорания. Вторая задача— определить возбудители колебаний, подавить их и затем рассчитать результирующие напряжения. Поскольку форма деталей камеры сгорания и рабочих лопаток сложна, расчет частоты колебаний не так-то прост. Чтобы рассчитать частоту и моду колебаний, а затем и величину локальных напряжений, приходящихся на единичный подавитель и единичный возбудитель колебаний в лопатках, применяют компьютерную программу, в основу которой положена теория сложного пучка или метод анализа конечных элементов. Помимо сведений, необходимых для расчета температуры, конструктору нужны сведения о плотности, модуле Юнга и коэффициенте Пуассона материала. В некоторых конструкциях колебания настолько серьезны, что требуется расчет специальных подавляющих устройств. В качестве таковых используют механические приспособления в виде различного вида упоров распирающих комельные части соседних лопаток, установленных на диске данной ступени. Эффективность подобных устройств оценивают посредством испытаний. В паровых турбинах возбуждение колебаний на каждом обороте ротора может быть очень значительным при впуске пара не по всей окружности турбины. В крупных па-  [c.73]

Накоплен значительный опыт использования титана для изготовления деталей турбин и турбокомпрессорных агрегатов (первые лопатки турбин были изготовлены на Ленинградском металлическом заводе еще в il959 г.). Применение титана позволяет повысить надежность конструкции в целом, снизить напряжения в роторе, повысить к. п. д. и т. д. Кроме лопаток, титан в турбинах используют для изготовления демпфирующих связен, бандажей. В работе [155] приведены данные об эффективности применения гитана в турбостроении. Так, например, при изготовлении турбины мощностью 300 МВт с использованием титановых сплавов достигается увеличение к. п. д. на 2,5%, а годовая экономия составляет 149 тыс. руб, или свыше 37 тыс. руб. на 1 т применяемого титана. Заменяя сталь титаном при изготовлении рабочих колес турбокомпрессора АТКА-545, можно уменьшить наполовину число ступеней сжатия, снизить металлоемкость машины и необходимую площадь для ее установки.  [c.113]


Смотреть главы в:

Конструкция и расчет на прочность деталей паровых и газовых турбин Изд.3  -> РОТОР И ЕГО ДЕТАЛИ Конструкция рабочих лопаток



ПОИСК



Детали Конструкции

Конструкции рабочих лопаток

Конструкции роторов

Лопатка

Лопатка рабочая

Лопатки Роторы

Ротор

Ротор рабочий



© 2025 Mash-xxl.info Реклама на сайте