Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Брызгальный бассейн производительностью

В настоящее время стоит задача создания брызгальных бассейнов производительностью до 1 млн. и /ч. Каждый из брызгальных бассейнов малой, средней и большой производительности может иметь свои индивидуальные компоновочные и конструктивные решения как отдельных элементов, так и бассейна в целом. С учетом опыта строительства и исследований, проведенных в последние годы, конструкции брызгальных бассейнов условно можно подразделить на три типа  [c.20]


Брызгальный бассейн производительностью 760 тыс. м ч  [c.63]

Сопла брызгальных бассейнов, производительность 267  [c.358]

Брызгальные бассейны производительностью более 400 м /ч Открытие градирни с решетками, жалюзи  [c.215]

Открытые и брызгальные градирни с жалюзи. . . 1—1,5 Брызгальные бассейны производительностью, м /ч  [c.5]

Брызгальные бассейны производительностью до 400 м 1ч......  [c.264]

Аэрация может быть осуществлена различными способами подачей воздуха во всасывающий патрубок насоса засасыванием воздуха инжектором или нагнетанием его в воду (через дырчатые трубы или через пористые пластины) с компрессором разбрызгиванием воды в воздухе с помощью разбрызгивающих устройств (например, типа брызгальных бассейнов), пропуском воды через вентиляторные градирни (при производительности более 100. .. 150 м/=>ч).  [c.266]

Оборотный цикл водоснабжения ферросплавных печей этого завода имеет производительность 2300 м ч и состоит из насосной станции с двумя группами насосов, двухсекционного брызгального бассейна площадью 300 м и необходимых трубопроводов.  [c.33]

Практика использования сравнительно небольших брызгальных бассейнов на действующих ТЭС показала, что эффективность работы охладителей этого типа может быть достаточно высокой. Однако малочисленность брызгальных бассейнов, а следовательно, и ограниченность натурных наблюдений на них, различие тепловых нагрузок и разная производительность, использование в каждой системе своих схем компоновок и конструкций разбрызгивающих устройств не позволяют однозначно решить весь комплекс задач, стоящих на пути широкого практического использования этого охладителя. Прежде всего необходимо определить эффективность брызгальных бассейнов в сравнении с известными типами промышленных охладителей (их место по уровню охлаждения и производительности), каким образом можно повысить их охлаждающую способность и, наконец, как прогнозировать гидроаэродинамические характеристики новых брызгальных бассейнов с учетом их возросшей производительности, конфигурации, климатической зоны, в которой они размещаются, рельефа местности и влияния на окружающую среду.  [c.21]

БРЫЗГАЛЬНЫЕ БАССЕЙНЫ БОЛЬШОЙ ПРОИЗВОДИТЕЛЬНОСТИ  [c.29]

Высокопроизводительный брызгальный бассейн для тепловых, а особенно для атомных станций может эффективно работать лишь тогда, когда его проект научно обоснован, что требует выполнения комплексных исследований, в состав которых входят натурные наблюдения на действующих брызгальных бассейнах и наблюдения за состоянием пограничного слоя атмосферы. Для получения надежных данных, обосновывающих новые конструктивные решения охладителя, прежде всего необходимы методика экспериментальных исследований и расчетный метод, с помощью которых можно было бы оценить уровень охлаждения различных по производительности, конфигурации, схемам компоновок разбрызгивающих устройств брызгальных бассейнов, прогнозировать их охлаждающую способность и проектировать бассейн с заданными характеристиками.  [c.29]


Учитывая сложность формирования капельного потока брызгальных бассейнов, отсутствие достоверных методов расчета охлаждающей способности бассейна в целом, а также необходимость создания брызгального бассейна большой производительности для использования в качестве основного охладителя ТЭС и АЭС, особое внимание необходимо уделять постановке экспериментальных исследований.  [c.41]

В связи с этим для научного и технического обоснования проекта брызгального бассейна большой производительности был спроектирован новый опытный брызгальный стенд для исследований группового расположения сопл [5]. В задачи исследований на стенде входило определение расходных характеристик известных разбрызгивающих устройств, выбор наиболее эффективного типа сопла, напора на соплах, схемы их компоновки, определение эффективности охлаждения горячей воды соплами в условиях взаимного влияния факелов разбрызгивания при различных направлениях и скоростях ветра, установление размеров брызгального бассейна при заданной плотности орошения, прогноз температур охлажденной воды. Решение всех этих задач реализуется на стенде благодаря его технологическим и конструктивным возможностям.  [c.42]

Исследования брызгальных водоохлаждающих устройств для выбора наиболее производительного и эффективного из них являются важным, но не окончательным этапом в конструировании брызгального бассейна в целом. Не менее важной является компоновка БВУ по площади предполагаемого брызгального бассейна. Если БВУ отдалить на значительное расстояние одно от другого, то охлаждающую способность бассейна можно считать равной охлаждающей способности единичного БВУ. Однако такой бассейн потребует столь больших площадей и значительных коммуникаций, что окажется бесперспективным (утверждение относится главным образом к высоким циркуляционным расходам от 20—40 mV и выше). Таким образом, на первый план выдвигается определение минимальных расстояний между БВУ, обеспечивающих заданный уровень охлаждения. Рекомендаций по компоновке разбрызгивающих устройств достаточно много, но, как правило, они основываются на аналогах или на экспериментах, которые могут быть использованы лишь для разработки малых брызгальных бассейнов или бассейнов, служащих дополнительными охладителями к башенным градирням или водохранилищам.  [c.61]

В соответствии с проектными разработками брызгальный бассейн оборудуют насосами производительностью 5 м с. Насос обеспечивает работу модуля, состоящего из пяти магистральных трубопроводов, на которых рас-  [c.63]

Гранулометрический состав капельного потока факелов разбрызгивания, который зависит как от напора воды, так и от конструкции брызгального устройства, преимущественно влияет на эффективность охлаждения воды брызгальными бассейнами. Чем мельче капли, тем выше их охлаждающая способность. Однако наличие в факелах разбрызгивания мелких капель обусловливает значительный вынос воды за пределы бассейна. Оценка выноса для центробежного сопла производительностью 3,3 л/с при напоре воды 0,068 МПа была произведена по экспериментальной зависимости, приведенной в работе [39].  [c.126]

Меньшая плошадь сравнительно с брызгальными бассейнами и возможность более компактного расположения при большой производительности сравнительно с открытыми градирнями  [c.272]

Снижение вакуума по этой причине было отмечено на станциях, составляющих 57% от общего числа изученных ОРГРЭСом. Недостаточное количество охлаждающей воды может вызываться состоянием циркуляционных насосов и всей циркуляционной системы, а также и самого конденсатора (засорение трубной доски и загрязнение трубок). Анализ влияния загрязнения трубок на показатели работы конденсационной установки сделан выше. Уменьшение расхода охлаждающей воды из-за засорения трубных досок, обусловленное увеличением гидродинамического сопротивления конденсатора, сопровождается повышением давления воды перед конденсатором (отмечается по манометрам) из-за уменьшения расхода охлаждающей воды увеличивается ее нагрев против нормального значения при данной паровой нагрузке конденсатора недогрев же воды At (если трубки чистые) остается в пределах обычных значений или незначительно выше. При уменьшении расхода воды из-за циркуляционных насосов или циркуляционной системы нагрев воды 81 тоже увеличивается против нормального, но гидродинамическое сопротивление самого конденсатора уменьшается. Вакуум может уменьшаться из-за слишком высокой температуры охлаждающей воды, это происходит обычно летом, особенно в установках, снабженных градирными или брызгальными бассейнами недостаточной производительности.  [c.343]


Стоимость сооружения компрессорной станции с поршневыми компрессорами с оборотной системой охлаждения и с брызгальным бассейном составляет (по данным проектирования заводов тяжёлого мащино-строения) в зависимости от мощности станции 66—120 руб. за 1 M jia установленной производительности всех компрессоров.  [c.489]

Брызгальный бассейн со стационарными водораспределительными устройствами требует меньших капитальных вложений и может быть возведен в более короткие сроки, чем современные башенные градирни той же производительности. На простоту и наделсность брызгальных бассейнов в эксплуатации, на их сейсмо- и ураганоустойчивость, небольшую потребность в электроэнергии указывают в своих работах практически все исследователи как в нашей стране, так и за рубежом. Однако у высокопроизводительных брызгальных бассейнов имеется серьезный недостаток, который заключается в низком эффекте охлаждения со стороны подветренной части бассейна.  [c.4]

В качестве самостоятельного охладителя брызгальные бассейны нашли применение в 1930—1940 гг. на небольших электростанциях, промышленных предприятиях, где перепад температур горячей и охлажденной воды был сравнительно небольшим, до 6—8° С, а расходы циркуляционной воды значительные, более 1500 ы.уч. Брызгальные бассейны с меньшими расходами циркуляционной воды иногда сооружаются при крупных холодильных, компрессорных и дизельных установках, но в этом случае они, как правило, по технико-экономическим показателям уступают башенным градирням малой производительности. Иногда брызгальные бассейны применялись при расширении ТЭС, когда к основному охладителю, обычно водо-,  [c.18]

Малая изученность брызгальных бассейнов предопределила и ограниченность методов математического моделирования, каждый из которых имеет эмпирическую основу. В связи с этим многие исследователи промышленных охладителей использовали известные методы оценки работы башенных градирен для брызгальных бассейнов. Один из наиболее распространенных подходов к решению задачи об оценке эффективности охлаждения воды в градирнях был сформулирован в 1925 г. Ф. Меркелем. Анализ уравнений, определяющих количество теплоты, переданной конвекцией и испарением, позволил Ф. Меркелю прийти к соотношению Gw wdtw = o(i —i)dF. Это уравнение может быть решено, и следовательно, может иметь практическое значение при четко выраженной зависимости между тепло- и массообменом, а также при известных температуре воды на входе в охладитель и выходе из него, температуре и влажности воздуха до и после охладителя при заданной производительности по воде и измеренном расходе  [c.21]

Многочисленными исследованиями достоверности этого соотнощения для атмосферных охладителей установлено, что при турбулентном потоке воздуха Le 1. Поэтому можно считать, что в этом случае требование соотнощения Меркеля выполняется. На действующих охладителях и экспериментальных установках, как правило, не возникает проблем в определении температуры воды на входе в охладитель и выходе из него, температуры и влажности наружного воздуха, производительности. Приближенность соотношения Меркеля связана с правой частью уравнения, где движущая сила представлена разностью энтальпий воздуха, определить которую имеющимися средствами с достаточной точностью не удается. В особенности это утверждение справедливо для брызгального бассейна. Большую сложность представляют определение температуры и влажности в выносимом тепловлажностном факеле и измерение расхода воздуха, участвующего в охлаждении. Даже размеры области, занятой капельным потоком, с учетом воздушных коридоров и сносимой под влиянием ветра части расхода воды в виде капель, определить весьма затруднительно. Критерий испарения К применим для оценки качества охладителя только в тех случаях, когда измерен расход воздуха.  [c.22]

Н. Н. Терентьева, которая была получена из анализа работы большого числа брызгальных бассейнов сравнительно малой производительности, оборудованных соплами конструкций Юни-Спрей и Спреко . Используя теоретическую зависимость коэффициентов тепло- и массоотдачи, данные лабораторных исследований по гранулометрическому составу капель и введя допущение его идентичности для различных конструкций разбрызгивающих устройств, Н. Н. Терентьев с помощью уравнения теплового баланса получил в виде номограммы зависимость температуры охлажденной воды от основных гидроаэро-термических характеристик водного и воздушного потоков. При этом не учитывались габариты факела разбрызгивания, производительность и компоновка единичных разбрызгивателей, параметры воздушного потока в области бассейна и на выходе из него, ориентация брызгального бассейна по отношению к направлению ветра.  [c.25]

Исследования и модель теплосъема брызгального бассейна большой производительности  [c.29]

Рис. 2.3. Блок-схема к расчету теилосъе.ма с брызгальных бассейнов большой производительности Рис. 2.3. <a href="/info/65409">Блок-схема</a> к расчету теилосъе.ма с <a href="/info/94313">брызгальных бассейнов</a> большой производительности
Теоретическая модель взаимодействия капельного потока брызгального бассейна с набегающим ветром весьма близка закономерностям, выявленным при натурных исследованиях. Важно, что при расчетных плотностях орошения порядка 4—5 mV(m -4) целесообразная протяженность брызгального бассейна не должна превышать 10—15 м, причем для каждой плотности орошения (при постоянном спектре капель и некоторой усредненной скорости ветра) имеется оптимальная протяженность брызгального бассейна. Необходимо подчеркнуть, что под протял<енностью бассейна подразумевается длина области повышенной плотности орошения до 5,0 mV(m -4), за ней пред- полагается устройство воздушного коридора и далее вновь область повышенной плотности орошения. Из таких брызгаль-ных систем могут быть выполнены брызгальные бассейны разной производительности.  [c.41]


В течение нескольких последних лет во ВНИИГ имени Б. Е. Веденеева на полигоне крупномасштабных исследований в Нарве проводились гидротермические исследования различных типов одииочных разбрызгивающих устройств, используемых в брызгальных бассейнах. Ограниченные размеры экспериментальной установки и относительно небольшие расходы горячей воды не позволяют исследовать взаимодействие факелов разбрызгивания при групповом расположении сопл, а на основании результатов исследований одиночных разбрызгивателей малой производительности весьма сложно выбрать их оптимальную компоновку в брызгальном бассейне.  [c.42]

Д/ составляет 21,4°С). Такой же уровень охлаждения обеспечивается при плановой компоновке сопл Б-50 с шагом 6X10 м (рис. 2.20). Устройство БВУ-4 производительностью 800— 900 ш /ч имеет температуру охлажденной воды 23° С (рис. 2.21), т. е. на 1,5° С выше, чем БВУ-4 производительностью 600 м /ч и плановая компоновка сопл Б-50. Вместе с тем эта разница температур охлажденной воды не может служить надежным критерием выбора конструкции БВУ для брызгального бассейна, поскольку совместная работа множества разбрызгивателей иногда мон<ет вносить значительные поправки в температуру охлажденной воды брызгального бассейна в целом.  [c.54]

Наряду с тепловыми испытаниями брызгальных устройств были проведены исследования влияния факела разбрызгивания на тепловлажностные характеристики воздуха, проходящего сквозь капельный поток. Важность этих исследований обусловлена не только получением необходимых эксперимеитальных данных для расчета влияния брызгального бассейна на окружающую среду, но и установлением возможности прогноза температур охлан<денной воды проектируемых брызгальных бассейнов. Экспериментальные исследования тепловлажностного факела, образуемого БВУ-4 производительностью 800 мУч при напоре воды 0,14 МПа помимо измерений гидротермических характеристик водного потока включали в себя измерения параметров воздуха в трех створах перед факелом разбрызгивания, с наветренной его стороны и на расстояниях 20 и 40 м  [c.58]

Проведенные исследования брызгальных бассейнов большой производительности включали в себя разработку нового способа оценки их охлаждающей способности. Способ основывается на экспериментальном изучении каждого брызгального устройства на опытном стенде. На первом этапе исследований определяется связь между температурой и влажностью воздушного потока в широком диапазоне их значений. На втором этапе на том же опытном стенде определяются тепловлажностные характеристики факела выноса, образующегося в результате взаимодействия ветрового потока с капельным потоком исследуемого брызгального устройства. Психрометром измеряются температура и влажность воздуха с наветренной стороны брызгального устройства (вне капельного потока) и температура и влажность воздуха в тепловлажностном факеле через определенное расстояние по направлению его движения. Измерения по ходу факела, проводимые, например, через 10 м, заканчиваются, когда температура и влажность воздуха окажутся равными температуре и влажности воздуха с наветренной стороны брызгального устройства, т. е. когда увлажненный и нагретый воздух полностью диссипируется в окружающей атмосфере.  [c.62]

Из числа испытанных брызгальных устройств для брызгального бассейна Запорожской АЭС была рекомендована конструкция БВУ-4 (см. рис. 2.13, 2.14) производительностью 800—900 м /ч при напоре воды порядка 0,14 МПа. Конструкция БВУ-4 обеспечивает лучший уровень охлаждения при минимальной площади отчуждения земель, чем другие конструкции, испытанные в ходе проведения работы. Прогноз температур охлажденной воды для брызгального бассейна большой производительности дан на основании экеперимен-тальной номограммы (см. рис, 2.21) при отсутствии теплового воздействия одного БВУ-4 на другое, что достигается по данным экспериментов при расстоянии между БВУ 20 м.  [c.63]

Проведенные исследования и представленные в гл. 2 материалы позволяют заключить, что для высокопроизводительных брызгальных бассейнов наиболее предпочтительным является БВУ-4 производительностью 800—900 и /ч, работающее при напоре 0,13—0,15 МПа и обеспечивающее необходимый уровень охлаждения при минимальных площадях отчуждаемой территории, при экономии металлических трубопроводов, бетона и железобетона и снижении объемов строительно-монтажных работ при независимой работе каждого БВУ от рядом стоящих предпочтительным является БВУ-4 производительностью 600 мЗ/ч при напоре 0,13—0,15 МПа при одном и том же напоре 0,13—0,15 МПа плановая компоновка сопл Б-50 с шагом между ними 6x10 м по уровню охлаждения близка БВУ-4 производительностью 600 м /ч и на 1,0—1,5° С охлаждает воду лучше, чем БВУ-4 производительностью 800— 900 мУч, но плановая компоновка сопл при этом требует большей площади под брызгальный бассейн.  [c.64]

Гончаров В. В. Исследования брызгальных бассейнов большой производительности//Материалы конференций и совещаний по гидротехнике Гидроаэротермические исследования и проектирование охладителей тепловых  [c.138]

Сооружения водоснабжения уже рассмотрены выше, в гл. VIII. Наибольшую площадь занимают пруды для естественного охлаждения в них циркуляционной воды. Площадь прудов должна быть не меньше 5, а часто >10 на один установленный киловатт мощности станции. Более интенсивно используется поверхность брызгальных бассейнов, площадь которых в 10—20 раз меньше площадей для прудов такой же производительности, т. е. необходимая площадь составляет не более  [c.171]

Область применения брызгальных бассейнов. Брызгальные бассейны применяются при достаточно большой и открытой для доступа воздуха площадке, благоприятных гидро1еологических условиях и количествах охлаждаемой воды более 500 м 1час. При меньших производительностях применение их целесообразно при необходимости создания значительного запаса воды.  [c.267]

Брызгальные бассейны с объемной производительностью, м ч до 500 500—5000 свыше 5000 Вентиляторные градирни с водоуло-вительнымн устройствами при отсутствии в оборотной технической воде токсичных веществ при наличии в оборотной технической воде токсичных веществ Открытые и брызгальные градирни  [c.476]

Брызгальные бассейны —это естественные, а чаще искусственные бетонные бассейны, над которыми производится распыливание воды. Охлаждаемая вода распределяется системой труб над бассейном (фиг. 158) и под давлением 5—7 м вод. ст. (иногда до 8— 10 м вод. ст.) поступает в сопла для распыливания. Благодаря увеличению поверхности контакта воды с воздухом происходит интенсивное испарение некоторой части воды, вследствие чего охлаждается основная масса воды, попадающей в бассейн. Охлаждение воды интенсифицируется при наличии ветра, но при этол происходит механический унос воды. Основным недостатком брызгальных бассейнов является значительная потеря охлаждающей воды (испаряемой и уносимой ветром) — от 2 до 5%. Из-за большого уноса воды зимой возможно обледенение ближайших к бассейну сооружений, а также сильное туманообразование. Для обеспечения надлежащей работы брызгальных бассейнов большое значение имеет выбор типа сопел, а также распределение воды, условия обдувания и другие факторы, содействующие наиболее интенсивному охлаждению воды. Некоторые наиболее распространенные конструкции сопел показаны на фиг. 159. Важнейшими требованиями к ним является тонкое распыливание воды при небольшом напоре, а также большая производительность (фиг. 160) и простота изготовления. Основное эксплуатационное требование — это незасоряемость сопел.  [c.318]


В рассмотренных установках происходит главным образом испарительное охлаждение циркуляционной воды вследствие испарения некоторой ее части, и в меньшей мере, в результате нагрева воздуха. Убыль воды в прудах и озерах пополняется естественным путем, а в градирнях и брызгальных бассейнах — при помощи насосной установки из близлежащих источников. Вследствие непрерывного испарения части воды жесткость воды в системе постепенно возрастает, что вызывает необходимость периодической смены воды или химического смягчения ее. Производительность охлаждающего устройства выражается объемным расходом воды W в м 1час (гидравлическая нагрузка). Характерным геометрическим размером является площадь поперечного сечения 8др в на том горизонтальном уровне, где происходит встреча воды с воздухом. Интенсивность работы охлаждающего устройства выражается удельной гидравлической  [c.324]


Смотреть страницы где упоминается термин Брызгальный бассейн производительностью : [c.26]    [c.622]    [c.20]    [c.20]    [c.20]    [c.57]    [c.64]    [c.11]   
Смотреть главы в:

Брызгальные водоохладительные ТЭС и АЭС  -> Брызгальный бассейн производительностью



ПОИСК



БРЫЗГАЛЬНЫЕ БАССЕЙНЫ БОЛЬШОЙ ПРОИЗВОДИТЕЛЬНОСТИ

Бассейн

Брызгальные бассейны



© 2025 Mash-xxl.info Реклама на сайте