Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Статические соотношения между силами и перемещениями

Если в принцип возможных сил = 8U подставить уравнения равновесия и статические граничные условия, то из него следуют соотношения между деформациями и перемещениями и геометрические граничные условия.  [c.89]

Таким образом, используя изложенный выше вариационный принцип, мы приходим к уравнениям равновесия и граничным условиям, записанным непосредственно в перемещениях. Отсюда очевидно, что данный принцип заключает в себе, как следствие, соотношения между напряжениями и деформациями (9.2). Это закономерно, поскольку рассматриваемый вариационный принцип выбирает из всех мыслимых геометрически возможных перемещений и статически возможных напряжений только те, которые соответствуют равновесию упругого тела при заданных внешних силах и условиях закрепления. А эти последние перемещения и напряжения отличаются от всех прочих геометрически возможных перемещений и статически возможных напряжений именно тем, что они связаны между собою соотношениями (9.2), выражающими тот закон упругости, которому подчиняется материал тела.  [c.136]


Статические соотношения между силами и перемещениями. Если на систему действуют внешние силы, то мы можем обозначить их обобш,енные компоненты через Qi, Q , Мы должны теперь  [c.216]

Общие уравнения динамической устойчивости упругих систем. Пусть соотношение между частотами возбуждения и наименьшей собственной частотой в невозмущенном движении таково, что при нахождении невозмущенного напряженно-деформированного состояния допустимо использовать квазистатическое приближение и пренебречь перемещениями в этом состоянии. Тогда уравнения динамической устойчивости каждой конкретной упругой системы могут быть получены из уравнений нейтрального равновесия для задачи статической устойчивости добавлением далам-беровых сил инерции и заменой усилий (напряжений) невозмущенного состояния соответствующими функциями времени. Если необходимо учитывать диссипацию, то в уравнения добавляют также диссипативные силы.  [c.248]

Клебш первый занялся исследованием задачи плоского напряженного состояния и дал решение для круглой пластинки (см. с тр. 310). Другой случай, имеющий большое практическое значе-лие, был решен Харлампием Сергеевичем Головиным (1844— 1904) ). Он заинтересовался деформациями и напряжениями круговых арок постоянной толщины. Рассматривая задачу как двумерную, он сумел получить решения для систем, представленных на рис. 170. Он находит, что в условиях чистого изгиба (рис. 170, а) поперечные сечения остаются плоскими, как это обычно и принимается в элементарной теории кривого бруса. Но найденное им распределение напряжений не совпадает с тем, которое дается элементарной теорией, поскольку последняя предполагает, что продольные волокна испытывают лишь напряжение о, простого растяжения или сжатия, между тем как Головин доказывает существование также и напряжений а , действующих в радиальном направлении. При изгибе же, производимом силой Р, приложенной к торцу (рис. 170, б), в Киждом поперечном сечении возникают не только нормальные напряжения, но также и касательные, причем распределение последних не следует параболическому закону, как это предполагается в элементарной теории. Головин вычисляет не только напряжения для такого кривого бруса, но также и его перемещения. Имея формулы перемещений, он получает возможность решить и статически неопределенную задачу арки с защемленными пятами. Проделанные им вычисления для обычных соотношений размеров арок показывают, что точность элементарной теории должна быть признана для практических целей вполне достаточной. Исследования Головина представляют собой первую попытку применения теории упругости в изучении напряжений в арках.  [c.419]


Применение общих теорем Лагранжа и Кастильяно к системам, для которых связь между внешними силами и перемещениями точек их приложения нелинейна, будь это вследствие того, что рассматриваются пластические деформации, или, как в примере предыдущего параграфа, вследствие того, что уравнения статики должны составляться для деформированного состояния, все равно наталкивается, на значите.1 ьные трудности. В нашем курсе мы ограничимся линейными упругими системами, то есть системами, элементы которых подчиняются закону Гука, сочленения осуществлены без трения и малость деформаций позволяет составлять уравнения статики для недеформированного состояния. При этих условиях, как мы выяснили в 32, перемещения и силы связаны линейными соотношениями. Легко видеть, что это относится в той же мере к изгибу и кручению, так как вёзде в этих задачах мы имеем дело с линейными функциями от сил. Исключение представляет случай продольно-поперечного изгиба там выражение для поперечного изгиба зависит от продольной силы сложным образом, через трансцендентные функции. Легко понять, в чем тут дело. При составлении дифференциального уравнения продольно-поперечного изгиба мы принимаем момент от продольной силы равным произведению силы на прогиб, то есть определяем статический фактор с учетом происшедшей деформации.  [c.336]


Смотреть страницы где упоминается термин Статические соотношения между силами и перемещениями : [c.39]    [c.93]    [c.42]    [c.279]    [c.301]    [c.75]   
Смотреть главы в:

Теоретическая механика Том 3  -> Статические соотношения между силами и перемещениями



ПОИСК



5 — Соотношения между

Соотношения статические



© 2025 Mash-xxl.info Реклама на сайте