Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теплообмен 19.2. Законы теплового излучения

Если необходимо моделировать массивный калориметр, то можно считать, что тело А представляет собой бомбу, находящуюся в идеальном тепловом контакте с телом В (металлический блок). В этом случае можно полагать, что температурное поле тела А равномерное, а в теле В могут возникать градиенты температуры. Тело В находится в условиях теплообмена с изотермической оболочкой О. Если калориметр является вакуумным, то теплообмен между телом и оболочкой следует рассчитывать по законам теплового излучения. В этой системе внутренним источником, искажающим температурный ход, является термометр сопротивления, в котором выделяется джоулево тепло.  [c.33]


Лучистый теплообмен в суш ествуюш их стационарных энергетических реакторах имеет второстепенное значение по сравнению с конвективным теплообменом и теплопроводностью. При этом во многих случаях оказывается возможным ограничиться расчетом лучистого теплообмена между двумя телами, разделенными прозрачной средой. Поэтому в настояш ей главе изложены лишь основные понятия и законы теплового излучения и приведены наиболее простые расчеты лучистого теплообмена в системе двух тел.  [c.325]

Т.е. известный закон четвертой степени для плотности теплового излучения. Подробно законы теплового излучения и лучистый теплообмен между телами рассматриваются в гл. 11.  [c.286]

Теплообмен излучением характеризуется тем, что некоторая часть внутренней энергии тела преобразуется в энергию излучения и передается через пространство. Носителями теплового излучения являются электромагнитные волны (фотоны), которые распространяются в пространстве в соответствии с законами оптики. Тепловое излучение тел определяется только их температурой и оптическими свойствами их поверхности. Излучение, соответствующее всему спектру длин волн (частот), называется интегральным излучением. Поток излучения, проходящий через единицу поверхности по всем направлениям (в пределах полусферического телесного угла), называется поверхностной плотностью потока интегрального излучения E dQ/dF.  [c.114]

Изложены законы термодинамики и их приложение к анализу круговых процессов и циклов тепловых двигателей и холодильных установок. Рассмотрены задачи теплопроводности, конвективного теплообмена и теплового излучения, а также основы расчета теплообменных аппаратов.  [c.2]

Отсюда вытекает практическая рекомендация не допускать в калориметрическом опыте разностей температур калориметра и оболочки больших, чем 2—3°. Но даже и в этом случае закону Ньютона подчиняется только теплообмен, обусловленный теплопроводностью и тепловым излучением. Следовательно, конвекция в слое воздуха, разделяющем ка-  [c.239]

Лучистый теплообмен. Тепловое излучение, возникающее в теле вследствие тепловой энергии, представляет собой электромагнитные колебания. Удельный поток излучения тела пропорционален четвертой степени его абсолютной температуры (закон Стефана — Больцмана)  [c.383]


Тепловое излучение, свойственное всем нагретым телам, относится к лучистому теплообмену, происходящему между нагретыми телами. Нагретое тело излучает энергию в соответствии с законом Стефана Больцмана  [c.13]

Первое и второе начала термодинамики для равновесного теплового излучения (законы Стефана—Больцмана и Кирхгофа). Следуя второй особенности феноменологического метода, воспользуемся основными началами термодинамики для определения связи между полусферической плотностью собственного интегрального лучистого потока соб температурой Т и физическими свойствами каждого из тел, участвующих в лучистом теплообмене.  [c.329]

Необходимо подчеркнуть, что законы Стефана — Больцмана и Кирхгофа вполне строги только для равновесного теплового излучения. Поэтому в условиях неравновесного лучистого теплообмена в системе тел, имеющих различную температуру, уравнения (10.11) и (10.12) становятся приближенными. Их использование для практических расчетов связывают с предположением о наличии местного термодинамического равновесия в каждой точке на поверхности каждого из 1ел, участвующих в теплообмене. Закон Кирхгофа позволяет сделать ряд выводов  [c.330]

Теплообмен излучением. Особенностью этого вида теплообмена является отсутствие непосредственного контакта тел, обменивающихся теплотой. Тепловое излучение имеет место у любых тел, температура которых отличается от нуля, однако перенос теплоты в заметных размерах наблюдается лишь при высоких температурах. Это видно из выражения закона Стефана—Больцмана, по которому энергия , излучаемая поверхностью тела, имеющего температуру Г, пропорциональна четвертой степени этой температуры = гСо(7 /100) , где г — степень черноты тела Со = 5,67 Вт/(м -К ) —коэффициент излучения абсолютно черного тела.  [c.59]

Совместные процессы взаимного испускания, поглощения, отражения и пропускания энергии излучения в системах различных тел называются лучистым теплообменом, причем тела, входящие в данную излучающую систему, могут иметь одинаковую температур Для тела, участвующего в лучистом теплообмене с другими телами, согласно закону сохранения энергии можно составить следующие уравнения теплового баланса (рис. 16-3)  [c.366]

Коэффициент Не зависит в общем случае от многих факторов скорости движения, удельного веса, температуры и природы среды (вязкость, теплопроводность, теплоемкость), направления теплового потока, формы поверхности, степени шероховатости и т. п. Поэтому а находят исключительно экспериментальным путем, пользуясь законами подобия (см. ниже). Таким образом, сложный процесс теплообмена был расчленен на два составляющих процесса теплообмен соприкосновением и теплообмен излучением, которые практически удобнее записать в следующем виде  [c.31]

Передача тепла излучением осуществляется между поверхностями тел, которые разделены средой, пропускающей это излучение. Она состоит в превращении тепловой энергии тела в тепловое электромагнитное излучение, которое частично поглощается другим телом и превращается в тепловую энергию. В той или иной степени теплообмен излучением наблюдается во всех калориметрических системах. В вакуумных калориметрах теплообмен между ядром и оболочкой протекает по законам лучистого теплообмена.  [c.16]

При теплообмене излучением теплота переносится между удаленными друг от друга нагреваемой деталью и окружающими предметами посредством электромагнитного излучения в соответствии с законом Стефана-Больцмана, т. е. тепловой поток пропорционален разности четвертых степеней абсолютных температур поверхностей, участвующих в теплообмене. При конвективном теплообмене теплота с поверхности изделия уносится жидкостью или газом, движение которых создается принудительно, а при естественной конвекции это движение обусловлено различием в плотности нагретых и ненагретых объемов.  [c.60]

В практике встречаются задачи, когда теплообмен тела с окружаюш,ей средой происходит не излучением или конвекцией (граничные условия соответственно 2-го и 3-го рода), а при помощи теплопроводности. Такой случай встречается, например, при теплообмене тела с очень вязкой жидкостью или в системе тел, находящихся в тепловом контакте. Здесь для каждого из тел такой системы имеют место так называемые граничные условия 4-го рода, т. е. теплообмен между телом и окружающими его телами или средой происходит по закону Фурье. Эти условия при идеальном тепловом контакте соприкасающихся тел требуют равенства температур обоих тел (или тела и среды) на поверхности контакта, а, кроме того, тепловые потоки в обоих телах у самой поверхности должны быть равны между собой. Математическая формулировка граничных условий 4-го рода имеет, таким образом, следующий вид  [c.104]


В первой части пособия излагаются основные понятия и законы термодинамики, термодинамические свойства рабочих тел, анализ термодинамических процессов и циклов. Рассматриваются циклы тепловых двигателей и холодильных машин, приводится эксерготический анализ эффективности тепломеханических систем. Во второй части описываются явления теплопроводности, конвективного теплообмена и теплового излучения, даются основы теплового расчета теплообменных аппаратов. Изложение математической теории теплообмена и теории подобия в начале второй части пособия позволило обеспечить единый подход к рассмотрению задач теплопроводности и конвективного теплообмена и избежать повторений.  [c.6]

Зависимость (В-3) была впервые установлена Й. Стефаном еще задолго до появления квантовой теории Планка. На основании термодинамического исследования ее получил Л. Больцман. Формула непосредственно вытекает из закона- излучения Планка. СШ1ьная зависимость Ео от температуры Т предопределяет важную роль теплового излучения в теплообмене при высоких температурах.  [c.6]

ЛУЧЙСТЫЙ ТЕПЛООБМЕН (радиационный теплообмен, лучистыЁ перенос), перенос энергии от одного тела к другому (а также между частями одного и того же тела), обусловленный процессами испускания, распространения, рассеяния и поглощения эл.-магн. излучения. Каждый из этих процессов подчиняется определ. закономерностям. Так, в условиях равновесного теплового излучения испускание и поглощение подчиняются Планка закону излучения, Стефана — Больцмана закону излучения, Кирхгофа закону излучения, распространение эл.-магн. излучения — закону независимости лучистых потоков (принцип суперпозиции). Рассеяние и поглощение в общем случае определяются свойствами в-ва (составом, темп-рой, плотностью).  [c.353]

Рассмотрены первый и второй законы термодинамики с детальным обоснованием понятия энтропии и элементами эксергетнческого анализа, свойства реальных рабочих тел, термодинамика потока, влажный воздух, а также холодильные установки и тепловые насосы. Изложены вопросы теплопроводности, конвективного теплообмена и излучения. Рассмотрены элементы теории пограничного слоя, современные методы расчета теплообменных аппаратов.  [c.2]

Теплообмен в топке рассчитывают двумя методами среднеинтегральным и позонным. В первом случае теплообмен рассматривается при постоянных средних значениях if и в объеме топки. Во втором — при переменных величинах л1з и ej. Рассмотрим первый метод расчета. Количество теплоты Q , переданной излучением от факела с температурой Тф на стены площадью поверхности с температурой Tg наружного слоя загрязнений и средним коэффициентом ipop тепловой эффективности, по закону Стефана-Больцмана  [c.183]

Коэффициент поглощения зависит как от свойств кристаллической решетки и состояния поверхности материала электрода, так и от особенностей спектра падающего теплового потока. При теплообмене с абсолютно черным телом, имеющим ту же температуру, что и данное тело, коэффициент поглощения равен коэффициенту излучения тела (закон Кирхгофа). В большинстве практических расчетов такое соответствие используют для приближенной оценки коэффициента поглощения любого тела при произвольном спектре падающего потока излучения. Таним образом,  [c.11]


Смотреть страницы где упоминается термин Теплообмен 19.2. Законы теплового излучения : [c.317]    [c.12]   
Смотреть главы в:

Техническая термодинамика и теплопередача  -> Теплообмен 19.2. Законы теплового излучения



ПОИСК



Законы излучения

Законы теплового излучения

Законы теплообмена излучением

Излучение теплообменное

ТЕПЛОВОЕ ИЗЛУЧЕНИЕ Законы теплового излучения

ТЕПЛООБМЕН ИЗЛУЧЕНИЕМ Г лава пятнадцатая. Основные положения и законы теплового излуче15- 1. Описание процесса

ТЕПЛООБМЕН ИЗЛУЧЕНИЕМ Глава ш е с т н а дц а т а я. Основные законы теплового излучения

Тепловое излучение

Теплообмен излучением



© 2025 Mash-xxl.info Реклама на сайте